
Towards Better Understanding of User AuthorizationQuery
Problem via Multi-variable Complexity Analysis

JASON CRAMPTON, Royal Holloway, University of London, United Kingdom

GREGORY Z. GUTIN, Royal Holloway, University of London, United Kingdom

DIPTAPRIYO MAJUMDAR, Royal Holloway, University of London, United Kingdom

User authorization queries in the context of role-based access control have attracted considerable interest in

the last 15 years. Such queries are used to determine whether it is possible to allocate a set of roles to a user

that enables the user to complete a task, in the sense that all the permissions required to complete the task

are assigned to the roles in that set. Answering such a query, in general, must take into account a number of

factors, including, but not limited to, the roles to which the user is assigned and constraints on the sets of roles

that can be activated. Answering such a query is known to be NP-hard. The presence of multiple parameters

and the need to find efficient and exact solutions to the problem suggest that a multi-variate approach will

enable us to better understand the complexity of the user authorization query problem (UAQ).

In this paper, we establish a number of complexity results for UAQ. Specifically, we show the problem

remains hard even when quite restrictive conditions are imposed on the structure of the problem. Our FPT

results show that we have to use either a parameter with potentially quite large values or quite a restricted

version of UAQ. Moreover, our second FPT algorithm is complex and requires sophisticated, state-of-the-art

techniques. In short, our results show that it is unlikely that all variants of UAQ that arise in practice can be

solved reasonably quickly in general.

CCS Concepts: • Security and Privacy→ Security Services; Access Control; Authorization.

Additional Key Words and Phrases: User Authorization Query, Parameterized Complexity, W-hardness,

Representative Families

ACM Reference Format:
Jason Crampton, Gregory Z. Gutin, and Diptapriyo Majumdar. 2018. Towards Better Understanding of User

Authorization Query Problem via Multi-variable Complexity Analysis. In . ACM, New York, NY, USA, 22 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In Role-Based Access Control (RBAC), permissions are not assigned to users directly. A user is

assigned roles and roles are assigned permissions. Thus, a useru is authorized for those permissions

that are assigned to at least one role to which u is assigned.

A user interacts with an RBAC system by activating some subset of the roles to which she is

assigned. In certain situations, it is useful to be able to identify the particular subset of roles a user

needs to activate in order to complete a task that requires specific permissions. A user authorization

query seeks to find a set of roles that is suitable for a given set of permissions. A substantial body

of work has established that user authorization queries are, in general, hard to solve [4, 12].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

, ,
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

, , Crampton et al.

Generally speaking, it is important from the end-user perspective to answer access control

queries as quickly as possible. Moreover, it is important that the answers to those queries are correct,

otherwise a user may not be able to complete a task (because too few permissions are assigned

to the solution’s role set) or security breaches may occur (in the case of too many permissions).

Thus, it is desirable to find algorithms to solve user authorization queries that are exact and as

fast as possible. Existing NP-hardness results [4, 12] show that such algorithms are unlikely to

exist for all user authorization queries. However, such queries have several numerical parameters,

some of which may be small in all instances of practical interest. Hence, it is worth exploring such

queries from the perspective of fixed-parameter tractability (a short introduction to parameterized

algorithms and complexity is given in Section 2).

As for other practical problems, SAT and other solvers for User Authorization Query (UAQ)

have been tested and compared with other solvers using benchmarks. Recently, Armando et al.

[1] suggested a methodology to evaluate existing benchmarks for UAQ and to guide the design of

new ones. The methodology is based on the use of fixed-parameter tractable (FPT) algorithms, i.e.,

algorithms which run in time f (k)N c , where N is the size of the problem instance, k is a parameter

or sum of several parameters, f is a function depending only on k , and c is a constant. Note that
when k is fixed, then the algorithm’s running time becomes polynomial of constant degree. Often c
is small, but for an FPT algorithm to be practical, k should be relatively small and f relatively slow

growing. Armando et al. observed that “the proposed methodology will yield different, improved

results as soon as new complexity results will become available. Thus the benchmarks proposed and

used in this paper could be improved consequently.” In this paper, we prove some parameterized

tractability results for restricted versions of UAQ that can be applied in that methodology.

On the other hand, we show that queries for some quite constrained RBAC configurations remain

hard, even from the parameterized complexity point of view, i.e., it is highly unlikely that there

are FPT algorithms for them. Our parameterized intractability results indicate that to obtain FPT
algorithms for UAQ with small parameters we have to consider quite restricted versions of UAQ.

Two well-known access control problems – UAQ and the Workflow Satisfiability Problem (WSP)

– are “equally" intractable from the classical complexity point of view (i.e., NP-complete). However,

from a more fine-grained parameterized complexity point of view, the time complexities of the

two problems, even in their most basic forms, are quite different. While Wang and Li [24] and

subsequent research (e.g., [5, 7, 14]) showed that basic and more advanced versions of WSP are FPT,
our hardness results in this paper clearly demonstrate that several parameterized basic versions of

UAQ are still intractable. Moreover, we show in Section 4 that even a quite restrictive version of

UAQ can require advanced algorithmic methods to design an FPT algorithm, which was not the

case with WSP. Thus, it is likely that the search for practical algorithms to solve UAQ will be less

successful than it was for WSP (see, e.g., [3, 6, 16]).

1.1 User AuthorizationQuery Problem and Its Reduction
An RBAC configuration has the form ρ = ((R, ≤), P ,RP), where (R, ≤) is a role hierarchy modeled

as a partially ordered set of roles, and RP ⊆ R × P is an assignment of roles to permissions. A role

r ∈ R is authorized for the set of permissions P (r) = {p ∈ P | (p, r ′) ∈ RP , r ′ ≤ r }. Then a user u,
authorized for a set of roles R′ ⊆ R, is authorized for the set of permissions P (R′) =

⋃
r ∈R′ P (r).

The role-permission graph (RPG) is the bipartite graph (R ∪ P ,RP) with partite sets R and P and

edge set RP . (It is assumed that R and P are disjoint.) A (dynamic) separation of duty constraint has
the form ⟨X , t⟩, where 1 ≤ t ≤ |X | for X ⊆ R. The semantics of an SoD constraint is that no user

can activate t or more roles from X (thus restricting the sets of roles that may provide a solution to

the user authorization query). We can now formulate a decision version of the problem studied in

this paper.

2

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

User AuthorizationQuery

Input: An RBAC policy ((R, ≤), P ,RP), Plb , Pub ⊆ P , a set of constraints D, and integers kr ,
kp .
Question: Does there exist a solution, which is set of roles Rs ⊆ R such that |Rs | ⩽ kr , Rs
satisfies all constraints in D, Plb ⊆ P (Rs) ⊆ Pub and |P (Rs) \ Plb | ⩽ kp? If the answer is yes,
find a solution.

Note that there are search versions of the problem [1, 25]. Wickramaarachchi et al. [25], for

example, do not specify kp and kr . Instead, a problem instance includes an objective, which takes

one of two values – min or max – and specifies the required nature of a solution set. Specifically,

given ((R, ≤), P ,RP), Plb , Pub , D and min (respectively, max), find R′ ⊆ R such that

(1) Plb ⊆ P (r) ⊆ Pub ,
(2) R′ satisfies all constraints in D, and

(3) for any R′′ that satisfies conditions 1 and 2, we have |R′ | ≤ |R′′ | (respectively, |R′ | ≥ |R′′ |).

We say that User Authorization Query (UAQ) is non-hierarchical if no partial order is defined

on the set of roles. Moffet [20] has argued that role hierarchies are not necessarily appropriate

structures for access control (see also [21]). Moreover, it is always possible to eliminate a role

hierarchy by assigning the (inherited) permissions of junior roles explicitly to more senior roles.

Hereafter, we will consider only non-hierarchical UAQs.

We will use the following reduction from the UAQ instance to an equivalent instance, i.e., both

instances are either yes-instances or no-instances.

Reduction Rule 0. (i) delete any role r such that P (r) ∩ Plb = ∅ (since r cannot contribute to a set
of roles that satisfies the instance);
(ii) delete any role r such that P (r) \ Pub , ∅ (since r contributes permissions that are not allowed);
(iii) for any deleted role r and any SoD constraint ⟨X , t⟩with r ∈ X , replace the constraint by ⟨X \{r }, t⟩;
(iv) for any deleted role r , remove all pairs of the form (r ,p) from RP ;
(v) delete any constraint ⟨X , t⟩ in which |X | < t .

One consequence of applying the above reduction rule is that we may assume without loss of gen-

erality that Pub = P . Thus, in this paper a UAQ instancewill bewritten as a tuple (R, P ,RP , Plb ,D,kr ,kp).

1.2 Our results
In Section 3, we present parameterized intractability results for UAQ when there are no SoD

constraints. These results are based on a hierarchy of parameterized intractability classes, which

we describe in more detail in Section 2. Informally, parameterized problems which admit FPT
algorithms form the tractable class FPT. There is an infinite number of parameterized intractability

classesW[i], i ≥ 1, such that FPT⊆W[1]⊆W[2]⊆ A problem belongs toW[i] if it can be reduced

to one of the hardest problems in W[i]. It is widely believed that FPT,W[1] (and hence FPT,W[i]

for any i). In particular, a parameterized problem proved to beW[i]-hard is highly unlikely to admit

an FPT algorithm.

We prove that if Pℓb = P then UAQ parameterized by kr is W[2]-hard and if kr = |R | (i.e., there
is no restriction on the size of UAQ solution) then UAQ parameterized by kp isW[2]-hard. Note

that these results strengthen the classical NP-hardness results of Du and Joshi [12] (for D = ∅ and

Pℓb = P) and of Chen and Crampton [4] (for D = ∅ and kr = |R |). In the same section, we also

prove that UAQ parameterized by |Pℓb | + kp isW[1]-hard even under the following restrictions:

(i) every role is authorized for at most three permissions from P and at most two permissions from

P \ Pℓb , and (ii) every two roles are authorized for at most two common permissions. This result

3

, , Crampton et al.

shows that we have parameterized intractability even for UAQ without SoD constraints, with quite

a restrictive structure imposed on RPG, and parameterized by a parameter which can be quite large

due to |Pℓb | (see, e.g., Table 1 in [1]).

Let R2 be the set of roles that are authorized for at least one permission outside Pℓb and let

r̂ = |R2 |. In Section 3 we also prove that UAQ with D = ∅ and kr = |R | admits an algorithm

of running time O∗ (2r̂). Note that this algorithm is asymptotically faster than an algorithm of

runtime O∗ (2 |R |) introduced in [26] and studied in [23, 25], so it can be used for producing new

UAQ benchmarks with D = ∅ and kr = |R |.

Let
ˆk = |P \ Pℓb |. In Section 4, we study UAQ such that |P (r) ∩ P (r ′) | ⩽ 1 for all r , r ′ ∈ R. We

prove that this form of UAQ, parameterized by kr + ˆk , isW[1]-hard even when every SoD constraint

⟨X , t⟩ in D has |X | = t = 2. Note that in this result the parameter can be significantly larger than

in the one above for Pℓb = P but we do allow SoD constraints. This result can be easily extended

to the case when for fixed integers α ≥ 2 and β ≥ 2, no α roles are collectively authorized for β
permissions.

In Section 5, we study amore restrictive UAQ problem satisfying the following conditions for fixed

integers α ≥ 2 and β ≥ 2: (i) for every set of α roles, {r1, . . . , rα }, |P (r1) ∩ P (r2) ∩ · · · ∩ P (rα) | < β ;
(ii) there is a constant c such that for every SoD constraint ⟨X , t⟩ we have |X | ≤ c; and (iii) for

every pair ⟨X1, t1⟩, ⟨X2, t2⟩ of SoD constraints, we have X1 ∩ X2 = ∅. We prove that this problem

parameterized by kr + ˆk is FPT and admits an algorithm of running time O∗ (2O (k
α
r +

ˆk)). The design of
this algorithm incorporates several algorithmic tools: reduction rules, branching rules and advanced

dynamic programming which uses representative families on matroids. Hence, we believe that

it is unlikely that (simple) FPT algorithms exist when the parameter of interest is small, even

for significantly restricted versions of UAQ, in sharp contrast to WSP, for which efficient FPT
algorithms exist for most instances of practical interest [5, 16].

For ease of reference, we summarize the notation we use in the paper and our results in Tables 1

and 2, respectively.

2 PRELIMINARIES
Terminology and Notation. For a graph G = ⟨V (G),E (G)⟩ and vertex x ∈ V (G), NG (x) = {y ∈

V (G) | xy ∈ E (G)} is the set of vertices adjacent to x (“neighbors”). For a set S ⊆ V (G), N (S) =⋃
x ∈S NG (x) \ S .We will omit the subscript G when the graph is clear from the context.

A graph G is bipartite if its vertices can be partitioned into two sets A and B such that for all

ab ∈ E, a ∈ A and b ∈ B. We will generally write a bipartite graph G in the form G = (A ⊎ B,E). A
bipartite graph G = (A ⊎ B,E) is complete if ab ∈ E for every a ∈ A and b ∈ B. Such a graph will

also be denoted (up to isomorphism) by Kα,β , where α = |A| and β = |B |. A graph is Kα,β -free if it
contains no induced subgraph isomorphic to Kα,β .

For a positive integer k , we write [k] to denote {1, 2, . . . ,k }.

Parameterized Complexity. An instance of a parameterized problem Π is a pair (I ,k) where I is
the main part and k is the parameter; the latter is usually a non-negative integer. A parameterized

problem is fixed-parameter tractable (FPT) if there exists a computable function f such that instances
(I ,k) can be solved in timeO (f (k) |I |c) where |I | denotes the size of I and c is an absolute constant.

The class of all fixed-parameter tractable decision problems is called FPT and algorithms which run

in the time specified above are called FPT algorithms. As in other literature on FPT algorithms, we

will often omit the polynomial factor in O (f (k) |I |c) and write O∗ (f (k)) instead.
Consider two parameterized problems Π and Π′. We say that Π has a parameterized reduction to

Π′ if there are functions k 7→ k ′ and k 7→ k ′′ from N to N and a function (I ,k) 7→ (I ′,k ′) such that

4

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

Table 1. Summary of notation used in the paper

Notation Meaning

R Set of roles

P Set of permissions

RP ⊆ R × P Role-permission assignment relation

P (r) ⊆ P Set of permissions assigned to role r
⟨X , t⟩, X ⊆ R, t ∈ N Separation-of-duty constraint

D Set of separation-of-duty constraints

Pℓb ⊆ P Required set of permissions in UAQ solution

kr ∈ N Maximum number of roles in UAQ solution

kp ∈ N Maximum number of permissions outside Pℓb in UAQ solution

r̂ ∈ N Number of roles assigned to at least one permission not in Pℓb
ˆk ∈ N Number of permissions not in Pℓb

G = (V ,E) Graph G with vertex set V and edge set E
N (v), v ∈ V Set of neighbors of v in G = ⟨V ,E⟩
N (S), S ⊆ V Set of neighbors of vertices in S
A ⊎ B Union of disjoint sets A and B
G = (A ⊎ B,E) Bipartite graph G, xy ∈ E iff x ∈ A and y ∈ B
Kα,β = (A ⊎ B,E) Complete bipartite graph, |A| = α , |B | = β

[k] Set of integers {1, . . . ,k }
O∗ (f (k)) O (f (k)p (k)), where p is some polynomial

Table 2. Summary of our results

Input restrictions Parameter Complexity
kr kp RPG D

|R | – – ∅ kp W[2]-hard

– 0 – ∅ kr W[2]-hard

|R | – – ∅ r̂ FPT

– –

|P (r) | ≤ 3

1 ≤ |P (r) ∩ Pℓb | ≤ 3

|P (r) ∩ P (r ′) | ≤ 2

∅ |Pℓb | + kp W[1]-hard

– – K2,2-free
{⟨X1, 2⟩, . . . , ⟨Xm , 2⟩}

|Xi | = 2

kr + ˆk W[1]-hard

– – Kα,β -free

{⟨X1, t1⟩, . . . , ⟨Xm , tm⟩}
|Xi | ≤ c

Xi ∩ X j = ∅

kr + ˆk FPT

(1) (I ,k) 7→ (I ′,k ′) is computable in k ′′(|I | + k)O (1)
time, and

(2) (I ,k) is a yes-instance of Π if and only if (I ′,k ′) is a yes-instance of Π′.

5

, , Crampton et al.

While FPT is a parameterized complexity analog of P in classic complexity theory, there are

many parameterized hardness classes, forming a nested sequence of which FPT is the first member:

FPT⊆W[1]⊆W[2] ⊆ It is well known that if the Exponential Time Hypothesis holds then

FPT ,W[1].
1
Hence, W[1] is generally viewed as a parameterized intractability class, which is an

analog of NP in classical complexity. Consider the following two parameterized problems. In the

Cliqe problem parameterized by k , given a graph G and a natural number k , we are to decide

whether G has a complete subgraph on k vertices. In the Dominating Set problem parameterized

by k , given a graph G = (V ,E) and a natural number k , we are to decide whether G has a set S of

vertices such that every vertex inV \ S is adjacent to some vertex in S . A parameterized problem Π
is inW[1] (W[2], respectively) if it there is parameterized reduction from Π to Cliqe (Dominating

Set, respectively). Thus, every W[1]-hard problem Π1 (W[2]-hard problem Π2, respectively) is not

‘easier’ than Cliqe (Dominating Set, respectively), i.e., Cliqe (Dominating Set, respectively)

has a parameterized reduction to Π1 (Π2, respectively).
More information on parameterized algorithms and complexity can be found in recent books [8,

11].

3 PARAMETERIZED HARDNESS OF UAQSWITHOUT SOD CONSTRAINTS
In this section, we consider User Authorization Query problems with D = ∅. We will first

consider two Simple User AuthorizationQuery problems defined as follows:

Simple UAQ of Type 1: kr = |R | and D = ∅. Thus, an instance of kp -Simple UAQ problem can

be written as a tuple (R, P ,RP , Pℓb ,kp).
Simple UAQ of Type 2: Pℓb = P and D = ∅. Thus, an instance of kr -Simple UAQ problem can

be written as a tuple (R, P ,RP ,kr).

Note that Simple UAQ of Type 1 is a natural simplification of UAQ, which prior research has

established is NP-hard [4], thus establishing that more complex variants of the problem are also

hard. Below we will strengthen this result, showing (i) that it is “hard” from the FPT perspective

(unlike many versions of WSP [5]), and (ii) that FPT versions of the problem do exist when a

different small parameter is considered. Type 2 problems essentially ask whether it is possible to

find a small set of roles that are collectively authorized for a set of permissions. An algorithm to

solve this problem may well have use in applications such as role mining.

Theorem 1. The Simple UAQ problem of Type 1 (of Type 2, respectively) parameterized by kp
(by kr , respectively) is W[2]-hard.

To prove this theorem, we will use the following problem, which is W[2]-complete [10].

Red Blue Dominating Set

Input: A bipartite graph G = (A ⊎ B,E)
Parameter: k
Question: Is there a subset S of A of size k such that N (S) = B?

The proof of the theorem is based on parameterized reductions from Red Blue Dominating Set

to the Simple UAQ problems.

Proof of Theorem 1. Let (G = (A ⊎ B,E),k) be an instance of Red Blue Dominating Set

problem.

1
The Exponential Time Hypothesis is a conjecture that there is no algorithm solving 3-CNF Satisfiability in time 2

o (n)
,

where n is the number of variables.

6

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

Type 1. Let L = {pv | v ∈ A}. Set R = A, Pℓb = B, P = B ⊎ L, RP = E ∪ {(v,pv) | v ∈ A}
and kp = k . Let S ⊆ A. Note that by definitions of Red Blue Dominating Set and Simple UAQ

problem of Type 1, S is a solution of an Red Blue Dominating Set instance, i.e. N (S) = B and

|S | ≤ k, if and only if S is a solution of the corresponding UAQ instance, i.e., Plb ⊆ P (S) and
|P (S) \ Plb | = |pv : v ∈ S | ≤ k = kp . Thus, (G = (A ⊎ B,E),k) is a yes-instance of Red Blue

Dominating Set if and only if (R, P ,RP , Pℓb ,kp) is a yes-instance of Simple UAQ of Type 1. Since

Red Blue Dominating Set is W[2]-hard this reduction shows that Simple UAQ of Type 1 is also

W[2]-hard.

Type 2. Set R = A, P = B, RP = E and kr = k . This gives us an instance (R, P ,RP ,kr) of Simple
UAQ of Type 2. By the definitions of Red Blue Dominating Set and Simple UAQ of Type 2 and

setting Rs = S , it follows that (G = (A ⊎ B,E),k) is a yes-instance of Red Blue Dominating Set if

and only if (R, P ,RP ,kr) is a yes-instance of Simple UAQ of Type 2. Since Red Blue Dominating

Set is W[2]-hard this reduction shows that Simple UAQ of Type 2 is alsoW[2]-hard. □

Theorem 1 asserts that Simple UAQ of Type 1 parameterized by kp is W[2]-hard, implying that

it is highly unlikely to be FPT. This result is somewhat unexpected, given that WSP (which appears

to be a more complex problem) is FTP for most instances that are likely to arise in practice [5, 7].

However, we are able to prove that Simple UAQ of Type 1 is FPT when parameterized by a

different parameter. Let R1 = {r ∈ R | P (r) ⊆ Plb }, R2 = R \ R1, and r̂ = |R2 |. In other words, r̂
is the number of roles that are assigned to at least one permission outside Plb . We then have the

following result.

Theorem 2. Simple UAQ of Type 1 admits an algorithm of running time O∗ (2r̂). Thus, Simple
UAQ of Type 1 parameterized by r̂ is FPT.

Proof. Let I be an instance of Simple UAQ of Type 1. We consider every subset S2 of R2. If

|P (S2 ∪ R1) | ≤ kp + |Plb | and P (S2 ∪ R1) ⊇ Plb , then I is a yes-instance. If no such S2 exists, then I
is a no-instance.

Checking whether |P (S2 ∪ R1) | ≤ kp + |Plb | and P (S2 ∪ R1) ⊇ Plb can be done in polynomial

time. Thus, the overall running time is O∗ (2r̂). □

It is not clear how useful this result will be in practice. Further research is required to determine

the likelihood of this parameter being small in real-world instances.

In the rest of this section, we will prove the following:

Theorem 3. UAQ parameterized by |Pℓb | + kp is W[1]-hard even under the following restrictions:
• for all r ∈ R, |P (r) | ≤ 3 and 1 ≤ |P (r) ∩ Plb | ≤ 3 , and
• for all r , r ′ ∈ R, |P (r) ∩ P (r ′) | ≤ 2.

The first restriction requires that every role is authorized for at most three permissions and

at most two permissions not in Plb . The second restriction requires that every pair of roles is

authorized for at most two common permissions.

It is worth noting that the first restriction is unlikely to be satisfied by real-world RBAC instances.

RBAC is based on an assumption that the complexity of managing access control systems can be re-

duced by introducing (a relatively small number of) roles as an abstraction acting as an intermediate

layer between users and permissions and the roles will be assigned to many permissions and many

users. (In other words the number of relationships that needs to be maintained is O (|R |(|U | + |P |))
rather than O (|U | |P |).) In short, imposing such a small upper bound on the number of permission

assignments to each role means that this result is unlikely to be applicable to many real-world

instances. (The second restriction is less problematic, at least in the non-hierarchical setting, as

7

, , Crampton et al.

one would expect sets of permissions assigned to different roles to be approximately disjoint, with

users being assigned to several roles.)

To prove this theorem, we provide a parameterized reduction from Multicolored Bicliqe,

which is known to be W[1]-hard [8], defined as follows.

Multicolored Bicliqe

Input: A bipartite graph G = (A ⊎ B,E),A = A1 ⊎ · · · ⊎Ak ,B = B1 ⊎ · · · ⊎ Bk
Parameter: k
Question: Is there A′ ⊆ A,B′ ⊆ B such that for every i ∈ [k], |Ai ∩A

′ | = |Bi ∩ B′ | = 1, and

A′ ∪ B′ induces a complete bipartite graph?

Construction 1. Consider an instance ofMulticolored Bicliqe, where G = (A ⊎ B,E) is a
bipartite graph, A = A1 ⊎ A2 ⊎ · · · ⊎ Ak , and B = B1 ⊎ B2 ⊎ . . . ⊎ Bk . We construct an instance of
User AuthorizationQuery as follows:
• R = {ruv | uv ∈ E},
• Pℓb = {pi, j | (i, j) ∈ [k] × [k]},
• P = Pℓb ∪A ∪ B,
• for every uv ∈ E, if u ∈ Ai ,v ∈ Bj , then P (ruv) = {u,v,pi, j },
• kr = k

2, kp = 2k .

In the construction we create a role for every edge of G, a permission for every vertex in G,
and a permission for every ordered pair in [k] × [k]. Moreover, the vertices of G form P \ Plb .
The intuition behind the construction is that the permissions associated with a role re encode an
edge e = uv ∈ E, and the pair (Ai ,Bj) to which u and v respectively belong. Note that the User

AuthorizationQuery instance generated by Construction 1 satisfies the criteria in Theorem 3.

Consider the instance of Multicolored Bicliqe shown in Figure 1(a) comprising sets A =
{a1,a2}⊎{a3,a4,a5} and B = {b1,b2}⊎{b3,b4}. The instance has a solution, also shown in Figure 1(a).
Construction 1 generates a UAQ instance with solution {r22, r23, r32, r33}, corresponding to the edges
in the biclique solution. The permissions associated with these roles respectively include p11, p12,
p21 and p22 (the set Pℓb), reflecting the fact that the Multicolored Bicliqe solution must contain

an edge from every block in the partition of A to every block in the partition of B. (Hence, there
must be k2 such permissions - four in this example.) Moreover, each role is assigned two further

permissions, corresponding to the endpoints of the edges defining the roles. (Hence, there are a

further 2k permissions - four in this example.) Note that in Figure 1(b) we used dashed and dotted

lines in the UAQ solution to differentiate between the edges that "encode" the required relationships

between the blocks in theMulticolored Bicliqe instance and the edges in theMulticolored

Bicliqe solution, respectively.

We have the following:

Lemma 1. Let (R, P ,RP , Pℓb , ∅,kr ,kp) be a UAQ instance created from an instance (G,k) of Mul-

ticolored Bicliqe. Then, (G,k) is a yes-instance if and only if (R, P ,RP , Pℓb , ∅,kr ,kp) is.

Proof. First we give the forward direction (⇒) of the proof. Let (G,k) be a yes-instance of

Multicolored Bicliqe and suppose that S ⊆ V be a solution of (G,k). This means that for every

i ∈ [k], |S ∩Ai | = |S ∩Bi | = 1. We construct the role set Rs ⊆ R using S ⊆ V as follows. We put ruv
into Rs if and only if uv is an edge in G[S]. Observe that P (Rs) ⊇ Pℓb since S intersects every Ai
and every Bj . Since every role of Rs corresponds to an edge inG[S], and there are k2 edges inG[S],
we have |Rs | = k

2
. Since there are 2k vertices in S , Rs is authorized for 2k permissions in P \ Pℓb .

Now, we give the backward direction (⇐) of the proof. Let Rs ⊆ R be a set of at most k2 roles
that is authorized for all permissions in Pℓb and at most 2k permissions in P \ Pℓb . Consider the

8

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

a1

a2

a3

a4

a5

b1

b2

b3

b4

a2

a3

b2

b3

(a)Multicolored Bicliqe instance and solution

r22

r23

r32

r33

p21

p12

p11

p22

a2

a3

b2

b3

(b) UAQ solution

Fig. 1. Multicolored Bicliqe instance and corresponding UAQ solution using Construction 1

set S of permissions from P \ Pℓb authorized by Rs . We claim that G[S] is a complete bipartite

graph such that for all i ∈ [k], |S ∩Ai | = |S ∩ Bi | = 1. Consider an arbitrary permission pi, j ∈ Pℓb .
Only a role ruv such that u ∈ Ai ,v ∈ Bj is authorized for this permission. Hence, for every i ∈ [k],
|S ∩Ai |, |S ∩ Bi | ≥ 1. Furthermore, the roles in Rs are assigned at most 2k permissions from P \ Pℓb .
So, |S ∩ Ai | = |S ∩ Bi | = 1. For any role ruv ∈ Rs , uv ∈ E. So, G[S] induces a complete bipartite

graph. Hence, (G,k) is a yes-instance for Multicolored Bicliqe. □

Proof of Theorem 3. By Construction 1, there exists a polynomial time reduction fromMulti-

colored Bicliqe parameterized by k to UAQ parameterized by k2 + 2k where kr = k
2,kp = 2k .

Also by this construction, every role is authorized for at most two permissions from P \ Pℓb and at

most three permissions from P . Since every role is authorized for exactly three permissions and

no pair of roles is authorized for the same set of permissions, every pair of roles is authorized for

at most two common permissions. By construction, |Pℓb | = k2. Hence, by Lemma 1 and the fact

thatMulticolored Bicliqe is W[1]-hard, UAQ parameterized by |Pℓb | + kp isW[1]-hard even

when every role is authorized at most three permissions from P and at most two permissions from

P \ Pℓb and every two roles are authorized for at most two common permissions. □

4 W[1]-HARDNESS WHEN RPG IS K2,2-FREE
We now consider restricting UAQ to instances in which |P (r) ∩ P (r ′) | ⩽ 1 for all r , r ′ ∈ R. In
other words, any two roles are authorized for at most one common permission. Technically, this is

equivalent to saying the bipartite graph RPG contains no subgraph isomorphic to K2,2. Hence we

will call such instances of UAQ K2,2-free. We show that UAQ for K2,2-free instances is W[1]-hard.

We believe that this result is useful because it demonstrates that UAQ remains a hard problem even

when we impose a strong restriction (and one that few RBAC instances are likely to satisfy) on RPG.

The practical consequence of this result is that UAQ is hard for most real-world RBAC instances

with constraints.

In Section 5, we relax the condition on RPG somewhat (making UAQ Kα,β -free for α , β > 2) but

impose restrictions on the set of constraints. We show that UAQ is FPT with these restrictions. This

9

, , Crampton et al.

positive result means that UAQ in real-world RBAC instances without constraints (i.e., instances
that trivially satisfy any restrictions on the set of constraints) may be solvable in a reasonable

amount of time. However, the FPT algorithm required to solve UAQ is extremely complicated

and requires sophisticated programming techniques. Moreover, the non-polynomial terms in the

running time are significant. In short, we believe it is unlikely that a simple and practical FPT

algorithm exists for instances of this type.

In the remainder of the paper we will write
ˆk to denote the number of permissions that are not

in Pℓb (i.e., |P \ Pℓb |).

Theorem 4. Consider a K2,2-free UAQ instance. Then, UAQ parameterized by kr + ˆk is W[1]-hard
even when every SoD constraint ⟨X , t⟩ in D has |X | = t = 2.

The proof is based on a parameter-preserving reduction from Multicolored Bicliqe to UAQ.

We construct a UAQ instance as follows. (This construction is similar to the one used in [15].)

Construction 2. Given G = (V ,E), where V = A1 ⊎ · · · ⊎Ak ⊎ B1 ⊎ · · · ⊎ Bk :
• R = {rv | v ∈ V } ∪ {s};
• P = {pv | v ∈ V } ∪ [2k] ∪ {q}, and Pℓb = P ;
• for every i ∈ [k], if v ∈ Ai , then P (rv) = {pv , i};
• for every i ∈ [2k] \ [k], if v ∈ Bi−k , then P (rv) = {pv , i};
• P (s) = {pv | v ∈ V } ∪ {q};
• given u ∈ A, v ∈ B, ⟨{ru , rv }, 2⟩ ∈ D iff uv < E;
• kr = 2k + 1 and kp = 0.

Construction 2 defines a role and a permission for each vertex. Additionally, we define role s and
permissions 1, . . . , 2k and q. The additional role and permissions are used to encode the structure

of the bipartite graph in terms of the sets into which A and B are partitioned, via the RP relation.

Finally, we use separation-of-duty constraints to ensure that we prohibit solutions to UAQ that are

not consistent with the structure of the bipartite graph in the Multicolored Bicliqe instance.

Observe that the resulting UAQ instance is non-hierarchical. We now show it is K2,2-free.

Lemma 2. Let (G = (A ⊎ B,E),k) be an instance of Multicolored Bicliqe. Then the UAQ
instance derived using Construction 2 is K2,2-free.

Proof. By construction, R = {rv | v ∈ V } ∪ {s}. Consider ru , rv for two distinct vertices u,v ∈ V .

The following cases can arise.

Case 1: If u,v ∈ Ai for some i ∈ [k], then P (ru) = {pu , i}, P (rv) = {pv , i}. Similarly, if u,v ∈
Bi−k for some i ∈ [2k] \ [k], then P (ru) = {pu , i}, P (rv) = {pv , i}. Then, |P (ru) ∩ P (rv) | ≤ 1.

Case 2: If u ∈ Ai ,v ∈ Aj for i, j ∈ [k], i , j , then P (ru) ∩ P (rv) = {pu , i} ∩ {pv , j} = ∅. Similarly,

if u ∈ Bi−k ,v ∈ Bj−k for two distinct i, j ∈ [2k] \ [k], then P (ru) ∩ P (rv) = ∅. Similarly, if

u ∈ Ai ,v ∈ Bj−k for i ∈ [k], j ∈ [2k] \ [k], then P (ru) ∩ P (rv) = ∅.
Case 3: Let u ∈ V . Recall that P (s) = {pu | u ∈ V } ∪ {q}, and P (ru) = {pu , i} for some i ∈ [2k].

Hence, P (ru) ∩ P (s) = {pu }.

The above cases are exhaustive and, in each case, every pair of distinct roles is assigned at most

one common permission. □

Lemma 3. (R, P ,RP ,D,kr ,kp) is a yes-instance for UAQ if and only if (G,k) is a yes-instance for
Multicolored Bicliqe.

Proof. First we give the forward direction (⇒) of the proof. Let (G,k) be a yes-instance of

Multicolored Bicliqe. Then, there exists S ⊆ V such that |S | = 2k , for all i ∈ [k], |Ai ∩ S | =

10

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

|Bi ∩ S | = 1, and G[S] induces a complete bipartite graph. We construct R∗ from S as follows:

R∗ = {ru | u ∈ S } ∪ {s}. By construction |R∗ | = 2k + 1 = kr . Since for every i ∈ [k], S contains

exactly one vertex from Ai , R
∗
is authorized for all permissions in [k]. Since for every i ∈ [2k] \ [k],

S contains exactly one vertex from Bi−j , R
∗
is authorized for all permissions in [2k] \ [k]. The role s

is authorized for all permissions in P \ [2k]. Hence, R∗ is authorized for all permissions in P .
Consider an arbitrary SoD constraint ⟨{ru , rv }, 2⟩ ∈ D. By construction, we have u ∈ A,v ∈ B,

and uv < E. But, then {u,v} ⊈ S . However, by construction, G[S] induces a complete bipartite

graph inG with bipartition S1 ⊎S2 such that S1 ⊆ A, S2 ⊆ B. Hence, for every u ∈ S1,v ∈ S2, uv ∈ E.
Thus, all the SoD constraints are satisfied for R∗. Hence, (R, P ,RP ,D,kr ,kp) is a yes-instance of
UAQ.

Now, we give the backward direction (⇐) of the proof. Let (R, P ,RP ,D,kr ,kp) be a yes-instance
of UAQ. Then, there exists a set R∗ of at most kr roles that are authorized for all permissions of

P . Observe that s ∈ R∗ since q ∈ P . Moreover, R∗ is authorized for all permissions in [2k]. Every
i ∈ [k] can be authorized by a unique role rv such that v ∈ Ai . Similarly, every i ∈ [2k] \ [k]
can be authorized by a unique role rv such that v ∈ Bi−k . We construct S from R∗ as follows. We

put v ∈ S if rv ∈ R
∗
. Since R∗ \ {s} contains 2k roles, S contains 2k vertices. Hence, |S | = 2k and

|S ∩Ai | = |S ∩ Bi | = 1.

We have S = S1 ⊎ S2, where S1 = S ∩A and S2 = S ∩ B. Note that R∗ satisfies all constraints inD
and consider a constraint ⟨{ru , rv }, 2⟩ ∈ D such that w.l.o.g. u ∈ A and v ∈ B. Since R∗ satisfies this
constraint, |R∗ ∩ {ru , rv }| ≤ 1 and hence |{u,v} ∩ S | ≤ 1. Hence, for every u ∈ S1 and v ∈ S2, we
have uv ∈ E implying that G[S] is a complete bipartite graph. Therefore, (G,k) is a yes-instance
forMulticolored Bicliqe. □

Proof of Theorem 4. Based on the above-mentioned construction and Lemma 3, an instance

(G,k) ofMulticolored Bicliqe can be transformed into an equivalent instance (R, P ,RP ,D,kr ,kp)
of UAQ where every SoD constraint is of the form ⟨X , 2⟩ such that |X | = 2. By construction, Plb = P .

The parameter is transformed from k to kr + ˆk = 2k + 1. Hence, this is a parameterized reduction

and the fact thatMulticolored Bicliqe is W[1]-hard, UAQ isW[1]-hard when parameterized by

kr + ˆk . □

Let α ≥ 2 and β ≥ 2 be fixed integers and assume that every α roles are authorized for at most

β − 1 common permissions. In other words, RPG is Kα,β -free. We call such UAQ the Kα,β -free UAQ
problem. Note that if RPG is K2,2-free then it is Kα,β -free for every α ≥ 2 and β ≥ 2. Thus, K2,2-free

UAQ is a special case of Kα,β -free UAQ. Therefore, parameterized intractability of Theorem 4 can

be extended to arbitrary integers α ≥ 2 and β ≥ 2. As the main result of the next section shows,

this parameterized intractability can be attributed to the fact that here SoD constraints can have

overlapping role sets.

5 FIXED-PARAMETER TRACTABILITYWHEN RPG IS Kα,β -FREE AND CONSTRAINTS
ARE NON-INTERSECTING

Let α ≥ 2 and β ≥ 2 be fixed integers. In this section, we consider the User AuthorizationQuery

problem restricted by the following conditions:

(i) for every set of α roles, {r1, . . . , rα }, |P (r1) ∩ P (r2) ∩ · · · ∩ P (rα) | < β ;
(ii) there is a constant c such that for every SoD constraint ⟨X , t⟩ we have |X | ≤ c;
(iii) for every pair ⟨X1, t1⟩, ⟨X2, t2⟩ of SoD constraints, we have X1 ∩ X2 = ∅.

We call this the (α , β)-User AuthorizationQuery problem ((α , β)-UAQ). Note that the RPG of

an instance of (α , β)-UAQ is Kα,β -free.

11

, , Crampton et al.

Recall that
ˆk = |P \ Pℓb |. We consider (α , β)-UAQ parameterized by kr + ˆk and prove that

it is FPT by designing an algorithm with running time O∗ (2O (k
α
r +

ˆk)) to solve the problem. The

algorithm makes use of matroids and dynamic programming. Moreover, we have to perform some

preprocessing on an (α , β)-UAQ instance to produce the input to the algorithm. Note that the

algorithm is not intended to inspire implementations, but rather offer a constructive proof of the

main result in this section.

In Section 5.1, we use reduction and branching rules to reduce the size of the original instance.

In particular, this preprocessing phase reduces the size of Pℓb to O (βkαr). This preprocessing takes

O∗ (αkr) time and also computes a partial solution R1 to the input instance. In every reduction and

branching rule, if we delete a role r from the input and reduce kr , then we add r to R1. Otherwise,

if kr remains unchanged, we just delete r from the input instance.

After the preprocessing phase, it is possible to use a dynamic programming algorithm to determine

whether there exists a solution to the original instance. We can use the same algorithm to determine

the size of the solution set. However, more advanced techniques are required to compute a solution
set.
Recall that a dynamic programming (DP) algorithm stores and re-uses solutions to smaller

sub-problems. In order to find a solution to (α , β)-UAQ, we need to store in the DP table some

candidate partial solutions in each of the DP table entries. However, it is not sufficient to store

one partial candidate solution in each DP table entry since we do not know which specific partial

candidate solution would extend to a candidate solution for the entire instance.

A naive approach could store all possible candidate partial solutions in the DP table entries.

Then the number of candidate partial solutions in a DP table entry could be as large as |R |kr ; so
this approach would not result in an FPT algorithm. Thus, we have to store only a “small” subset

of partial candidate solutions in each DP table entry. To be able to do this, we use an advanced

algorithmic technique known as the method of representative families on matroids. This method

ensures that if the input instance is a yes-instance, then a solution will be found, despite storing

only O∗ (2kr) partial candidate solutions in a table entry, stored in a table containining O∗ (2O (k
α
r)+ ˆk)

entries.

In Section 5.2, we provide the terminology, notation and results on matroids and representative

families that are necessary for describing and analyzing our DP algorithm based on the method of

representative families on matroids. We also describe how to construct a special partition matroid

used in the DP algorithm. This matroid enables us to identify those candidate solutions that do not

violate any constraints in the instance.

Finally, in Section 5.3, we describe and analyze our DP algorithmwhich takes a simplified instance

as input and finds a solution R2 of this instance such that R1 ∪ R2 is a solution of the original

instance. We also show that our overall algorithm for (α , β)-UAQ is FPT parameterized by kr + ˆk .

5.1 Preprocessing
In this section, we define several reduction and branching rules. A reduction rule for an instance

(I ,k) of a parameterized problem is safe if it reduces (I ,k) to (I ′,k ′) such that (I ,k) is a yes-instance
if and only if (I ′,k ′) is. A branching rule is safe if for input (I ,k) it outputs a number q of instances

(I ′
1
,k ′

1
), . . . , (I ′q ,k

′
q), q ≥ 1, such that (I ,k) is a yes-instance if and only if (I ′i ,k

′
i) is for some i ∈ [q].

We prove that each rule is safe and can be implemented either in polynomial time (for the reduction

rules) or in FPT time (for the branching rule). Moreover, we construct a partial solution R1 of the

problem, comprising those roles that must be in any solution of the problem; R1 is initialized as the

empty set.

12

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

Assume that we have an initial instance I = (R, P ,RP , Plb ,D,kr ,kp) of (α , β)-UAQ. Note that
the initial instance of the problem (already simplified by Reduction Rule 0) will not be reducible

by Reduction Rule 0. However, a variant of that rule is still required since it may be applied to

instances generated by other reduction rules. The following Reduction Rule 1 is the variant of

Reduction Rule 0 used in this section.

Reduction and branching rules are applied to an initial instance of the problem in the order the

rules are described in this section. For every rule we take an input instance and output an instance

or a number of instances (for a branching rule) such that if the output instance or one of the output

instances is different from the input instance then all the previous rules are applied to the new

instance (or, each of the new instances).

Reduction Rule 1. (i) delete any role r such that P (r) ∩ Plb = ∅ (since r cannot contribute to a
set of roles that satisfies the instance);
(iii) delete any role which is in a SoD constraint ⟨X , 1⟩;
(iv) for any deleted role r and any SoD constraint ⟨X , t⟩with r ∈ X , replace the constraint by ⟨X \{r }, t⟩;
(v) for any deleted role r , remove all pairs of the form (r ,p) from RP ;
(vi) delete any constraint ⟨X , t⟩ in which |X | < t .

We use the following update procedure for some of our subsequent rules.

Procedure UPDATE. Let r ∈ R be an arbitrary role. Then, Procedure UPDATE(r) executes the
following steps.

• Add r to R1;

• Set R ← R \ {r }, kr ← kr − 1, kp ← kp − |P (r) \ Pℓb |, Pℓb ← Pℓb \ P (r), P ← P \ P (r);
• Remove from RP all pairs which include permissions from P (r); and
• For every constraint ⟨X , t⟩ ∈ D, if r ∈ X , then replace the constraint ⟨X , t⟩ by ⟨X \ {r }, t − 1⟩.

Reduction Rule 2. Suppose that there is a permission p ∈ Pℓb that is assigned to a unique role
r ∈ R. If |P (r) \ Pℓb | ≥ kp + 1, then (R, P ,RP , Plb ,D,kr ,kp) is a no-instance. Otherwise (i.e. when
|P (r) \ Pℓb | ≤ kp), perform Procedure UPDATE(r).

Lemma 4. Reduction Rule 2 is safe and can be implemented in polynomial time.

Proof. For convenience we will denote the reduced instance by (R′, P ′,RP ′, P ′
ℓb ,D

′,k ′r ,k
′
p).

When r ∈ R is the unique role to which p ∈ Pℓb is assigned, then r must be in any solution. But, if

r is authorized for more than kp permissions from P \ Pℓb , then r cannot belong to any solution.

Thus, the input instance is a no-instance. So, we assume that |P (r) \ Pℓb | ≤ kp .
The backward direction (⇐) of the reduction rule is trivial. Let R∗ ⊆ R′ be a set of at most

k ′r roles such that P (R∗) ⊇ P ′
ℓb and |P (R∗) \ P ′

ℓb | ≤ k ′p . Also, R∗ satisfies all SoD constraints

in D ′. Then, R∗ ∪ {r } is a set of at most k ′r + 1 = kr roles such that P (R∗ ∪ {r }) ⊇ Pℓb and

|P (R∗ ∪ {r }) \ Pℓb | ⩽ k ′p + |P (r) ∩ (P \ Pℓb) | = kp . Also, if a constraint ⟨X , t⟩ ∈ D contains r , then
this constraint ⟨X , t⟩ will have been replaced by ⟨X \ {r }, t − 1⟩ ∈ D ′. Since, |(X \ {r }) ∩R∗ | ≤ t − 1,
we have that, |X ∩ (R∗ ∪ {r }) | ≤ t . Hence, all constraints in D are also satisfied.

Now, we give the forward direction (⇒) of the proof. Let (R, P , PR, Pℓb ,D,kr ,kp) be a yes-

instance. Sincep ∈ Pℓb is assigned to a unique role r ∈ R, r must be in any solution of (R, P , PR, Pℓb ,D,kr ,kp).
If R∗ is a set of at most kr roles that is a solution for (R, P , PR, Pℓb ,D,kr ,kp), then R∗ \ {r } is a set
of at most k ′r roles such that P (R∗ \ {r }) ⊇ P ′

ℓb and |P (R∗ \ {r }) \ P ′
ℓb | ≤ k ′p . Let ⟨X , t⟩ ∈ D be an

SoD constraint such that r ∈ X . Then, ⟨X , t⟩ will have been replaced by ⟨X \ {r }, t − 1⟩ ∈ D ′. Hence,
⟨X \ {r }, t − 1⟩ is satisfied by R∗ \ {r } and all SoD constraints in D ′ are also satisfied. □

13

, , Crampton et al.

Branching Rule 1. Let b = βk
q
r +

q−1∑
a=1

kar . For q = 1, 2, . . . ,α − 2, in this order, apply Branching

Rule 1.q repeatedly until it no longer causes any changes to the RPG.
• BranchingRule 1.q: If there exists a set L ⊆ R with (α−q) roles such that |(

⋂
r ∈L

P (r))∩Pℓb | > b,

then apply the following branching: for every role r in L such that |P (r) \ Pℓb | ≤ kp , perform
Procedure UPDATE(r).

Lemma 5. Let R∗ ⊆ R be a set of at most kr roles that satisfies all constraints in D, where
P (R∗) ⊇ Pℓb and |P (R∗) | ≤ |Pℓb |+kp . Consider an application of Branching Rule 1.q, 1 ≤ q ≤ α −2. If
L is a set of roles from R that satisfies the condition in Branching Rule 1.q, then R∗∩L , ∅. Furthermore,
R∗ ∩ L is authorized for at most kp permissions from P \ Pℓb .

Proof. Let P̂ℓb = (
⋂

r ∈L P (r)) ∩ Pℓb . Let R
∗ ⊆ R be a set of at most kr roles that satisfies all

constraints in D ′, is authorized for all permissions in Pℓb , and at most kp permissions from P \ Pℓb .
Consider two cases.

Case 1: q = 1. Then |L| = α − 1. Suppose that R∗ ∩ L = ∅. Consider any role r ∈ R∗. Since RPG is

Kα,β -free, |P (r) ∩ P̂ℓb | ≤ β − 1. Then, R∗ can be authorized for at most (β − 1)kr permissions from

P̂ℓb . This implies that there exists some permission p ∈ P̂ℓb ⊆ Pℓb such that R∗ cannot authorize p.
This is a contradiction. Hence, L ∩ R∗ , ∅.

Case 2: 2 ≤ q ≤ α − 2. Suppose that R∗ ∩ L = ∅. Since |P̂ℓb | > b, by the pigeon hole principle, there

exists a role y ∈ R∗ such that y is authorized for at least b/kr + 1 = βk
q−1
r + k

q−2
r + · · · + kr + 1 + 1

permissions in P̂ℓb . Then, consider P (L ∪ {y}). There are (α − q + 1) roles in L ∪ {y} and L ∪ {y} is

authorized for at least βk
q−1
r +k

q−2
r + · · ·+kr + 1+ 1 common permissions in Pℓb . Then, Branching

Rule 1.(q − 1) is also applicable. But, we apply Branching Rule 1.q only when for every i ∈ [q − 1],
Branching Rule 1.i is not applicable. This is a contradiction. Hence, R∗ has nonempty intersection

with L.
As R∗ is authorized for at most kp permissions from P \ Pℓb , L ∩ R

∗
is authorized for at most kp

permissions in P \ Pℓb . This completes the proof. □

Reduction Rule 3. Suppose that there is a role s ∈ R such that s is authorized for at least
h = βkα−1r +kα−2r + · · ·+k2r +kr + 1 permissions in Pℓb . If s is authorized for more than kp permissions
from P \Pℓb , then (R, P ,RP , Pℓb ,D,kr ,kp) is a no-instance. Otherwise, perform ProcedureUPDATE(s).

Lemma 6. Reduction Rule 3 is safe and can be implemented in polynomial time.

Proof. It suffices to prove that any solution of (R, P ,RP , Pℓb ,D,kr ,kp) must contain s . Let
A = P (s). Suppose that there exists a solution S ⊆ R such that s < S and |S | ≤ kr . Recall that
RPG is Kα,β -free. By assumption, S is authorized for all permissions in A. Since |A| ≥ h (by

the precondition of the reduction rule), there exists s ′ ∈ S such that s ′ is auhorized for at least

⌈h/kr ⌉ = βkα−2r + kα−3r + · · · + k2r + 1 + 1 permissions from Pℓb . Then, R has r1, r2 ∈ S such that

P (r1) ∩ P (r2) contains at least βk
α−2
r + kα−3r + · · · + k2r + 1 + 1 permissions. This means that the

precondition of Branching Rule 1.q becomes applicable for q = α − 2. This is a contradiction. Hence,
s ∈ S . □

After Reduction Rule 2, Branching Rule 1, and Reduction Rule 3 have been performed, there is

still a possibility that there is a role r such that |P (r) \ Pℓb | > kp . However, such roles cannot be

included in any solution. Hence, we need to apply the following reduction rule.

Reduction Rule 4. Delete any role r such that |P (r) \ Plb | > kp (since r cannot be included in
any yes-instance). Remove any pair from RP that contains a deleted role. If there is a deleted role r ∈ X
for a constraint ⟨X , t⟩, then replace this constraint by ⟨X \ {r }, t⟩.

14

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

Lemma 7. Suppose that I = (R, P ,RP , Pℓb ,D,kr ,kp) is an (α , β)-User Authorization Query

instance for which Reduction Rules 1, 2, 3, and 4, and Branching Rule 1 are not applicable. If |Pℓb | >
βkαr + k

α−1
r + · · · + k2r + kr , then I is a no-instance.

Proof. Let I = (R, P ,RP , Pℓb ,D,kr ,kp) be an irreducible yes instance but |Pℓb | > βkαr +k
α−1
r +

· · · + k2r + kr . Suppose that S ⊆ R is an arbitrary set such that |S | ≤ kr and it satisfies all the SoD

constraints. Since Reduction Rule 3 is not applicable to I,

�����

⋃
s ∈S

P (s) ∩ Pℓb
�����
≤ βkαr + k

α
r + k

α−1
r + · · · + k2r + kr .

Then, S is not authorized for all permissions in Pℓb . This contradicts the fact that S is a feasible

solution to I. Therefore, I is a no-instance. □

Observe that we have not yet used any special characteristics of the set D of SoD constraints.

Hence, Lemma 7 holds true for all classes of SoD constraints. Thus we obtain the following result.

Theorem 5. The preprocessing described above runs in time O∗ (αkr) and for an input instance of
(α , β)-UAQ, outputs an equivalent instance of (α , β)-UAQ such that |Pℓb | = O (βkαr).

Proof. Observe that all the reduction rules above can be implemented in polynomial time. For

every q ∈ [α − 2], Branching Rule 1.q is applied only when for all x ∈ [q − 1], Branching Rule 1.x is

not applicable. This branching rule is applied on a set Lwith at most α −1 vertices. From Lemma 5, if

the precondition to Branching Rule 1 is satisfied, then L has nonempty intersection with a solution

of size at most kr . Hence, this branching rule provides a (α − 1)-way branching with depth at most

kr . Hence, the number of leaves in this bounded search tree is O∗ (αkr).
We first apply Reduction Rules 1, 2, Branching Rule 1, and Reduction Rules 3, and 4 in sequence.

When these reduction and branching rules are no longer applicable, we check whether |Pℓb | >
βkαr +k

α
r +k

α−1
r +· · ·+k2r +kr . If |Pℓb | > βkαr +k

α
r +k

α−1
r +· · ·+k2r +kr , then we use Lemma 7 to output

that the given input instance is a no-instance. Otherwise, |Pℓb | ≤ βkαr + k
α
r + k

α−1
r + · · · + k2r + kr .

Hence, the reduced instance has |Pℓb | = O (βk
α
r). Since α is fixed, the input instance can be

transformed into an equivalent instance in O∗ (αkr) time. This completes the proof. □

5.2 Encoding Candidate Solutions as a Matroid
This section consists of two parts: in Section 5.2.1, we provide terminology, notation and results

on matroids and representative families, which are necessary for describing and analyzing our

DP algorithm; and in Section 5.2.2, we construct a matroid encoding role sets that do not violate

SoD constraints. We will call this matroid a constraint satisfaction matroid (CSM). This constraint
satisfaction matroid is used in our DP algorithm.

5.2.1 Matroids and Representative Families.

Definition 1. A family of sets I over a finite universe U is called a matroid if it satisfies the
following three axioms:

(1) ∅ ∈ I,
(2) if A ∈ I and B ⊆ A, then B ∈ I, and
(3) if A,B ∈ I such that |A| < |B |, then there exists x ∈ B \A such that A ∪ {x } ∈ I.

Let U be a universe of n elements, and let r be an integer such that r ≤ n. Then it is not hard

to verify that (U ,F) where F = {A ⊆ U : |A| ≤ r } satisfies the axioms of Definition 1. Hence,

(U ,F) is a matroid; (U ,F) is called a uniform matroid.

15

, , Crampton et al.

For a matroidM = (U ,I), any set A ∈ I is called an independent set. It follows from Definition 1

that all maximal independent sets of a matroidM have the same size, denoted rank (M), and called

the rank ofM . Clearly, the rank of the uniform matroid (U ,F) = {A ⊆ U : |A| ≤ r } is r .
A matroidM = (U ,I) is said to be representable over a field F if there is a matrix M̂ over F and

a bijection π : U → col(M̂), where col(M̂) is the set of columns of M̂ , such that A ⊆ U is an

independent set inM if and only if {π (a) : a ∈ A} is linearly independent over F. Clearly, the rank

ofM is the rank of the matrix M̂ . A matroid representable over a field F is a linear matroid over F.
A uniform matroid withU of size n can be represented over any field GF (p) for p > n (see e.g. [9]).

Definition 2. LetM1 = (U1,I1),M2 = (U2,I2), . . . ,Mt = (Ut ,It) be a collection of matroids such
that for every i , j ,Ui ∩Uj = ∅. Then, the direct sumM = M1 ⊕M2 ⊕ · · · ⊕Mt of these matroids is a
matroidM = (U ,I) such thatU = U1 ∪U2 ∪ · · · ∪Ut , and for every subset S ofU , S ∈ I if and only
if for all i ∈ [t], S ∩Ui ∈ Ii .
A partition matroid is a matroid formed from a direct sum of uniform matroids.

We use the following definitions and results [13, 17] to prove Theorem 6 in Section 5.3.

Definition 3. LetM = (U ,I) be a matroid and A be a family of independent sets of size p inM .
For sets A,B ⊆ U , we say that A fits B if A ∩ B = ∅, and A ∪ B ∈ I.

A subfamily ˆA ⊆ A is a q-representative family ofA if the following holds: for every B ⊆ U with
|B | ≤ q, there is an A ∈ A such that A fits B if and only if there is an Â ∈ ˆA such that Â fits B. We
write ˆA ⊆

q
rep A to denote that ˆA is a q-representative family of A.

Informally, a family of sets A that fits {B ⊆ U : |B | = q} provides a way of encoding all sets of

cardinality q in a matroid. Thus, a q-representative family is a compact method of encoding all

such sets. Our dynamic programming algorithm makes use of q-representative families and the

following results [13, 17] to reduce the number of entries in the DP table and ensure our algorithm

is FPT.

Lemma 8. Let M = (U ,I) be a matroid and F ⊆ I such that for every A ∈ F , |A| = p. If
F1 ⊆

q
rep F and F2 ⊆

q
rep F1, then F2 ⊆

q
rep F .

Lemma 9. LetM = (U ,I) be a linear matroid of rank n. Suppose thatM can be represented by an
n × |U |-matrix M̂ over a field F such that F = GF (s) or F = Q. Furthermore, let F = {S1, . . . , St } be a
family of independent sets inM , each of cardinality p. Then, there is a deterministic algorithm that
computes ˆF ⊆

q
rep F with O (

(
p+q
p

)
2

tp3n2 + t
(
p+q
p

)ω
np) + (n + |U |)O (1) field operations over F such

that | ˆF | ≤
(
p+q
p

)
and ω < 2.37 is the matrix multiplication exponent.

5.2.2 Constraint Satisfaction Matroid for (α , β)-UAQ. Let D ′ = {⟨X1, t1⟩, . . . , ⟨Xm , tm⟩} be the

collection of all SoD constraints in the reduced instance. Recall that for all i, j ∈ [m] with i , j,
Xi ∩ X j = ∅. For every i ∈ [m], define Mi (D

′) = (Xi ,Ii), where Ii = {A ⊆ Xi : |A| ≤ ti − 1}.

Observe thatMi (D
′) is a uniform matroid of rank ti − 1 and each element of the matroid is a set of

roles (in Xi) to which a single user could be assigned.

Let {rm+1, rm+2, . . . , rδ } be the set of roles that do not appear in anyXi . (That is, {{rm+1, . . . , rδ }∪
X1 ∪ · · · ∪ Xm = R.) For r j ,m + 1 ≤ j ≤ δ , we create a constraint ⟨X j , tj ⟩ such that X j = {r j } and
tj = 2, and construct the uniform matroidMj (D

′) = (X j , {∅, {r j }}).
Now let M (D ′) = M1 (D

′) ⊕ · · · ⊕ Mδ (D
′). By construction, M (D ′) = (R,I) is a partition

matroid, where I = {B ⊆ R : |B ∩ Xi | ≤ ti − 1, i ∈ [δ]}. Notice that each set in this matroid is a set

of roles that could be assigned to a single user (since the constraint sets are assumed to be disjoint).

16

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

It is known that a partition matroid M = (U ,I) is linear and that it possible to compute a

(|U | × |U |)-matrix that represents a partition matroid overGF (p) for any p > |U | in time polynomial

in |U | [9]. Hence, we have the following result.

Lemma 10. The matroid M (D ′) = (R,I) is a linear matroid of rank at most |R |. An |R | × |R |-
matrix M̂ over GF (p) for some p > |R | representingM (D ′) can be constructed in time polynomial in
|R |.

We callM (D ′) the constraint satisfaction matroid (CSM) for D ′. Observe thatM (D ′) is repre-
sented by an (|R | × |R |)-matrix. This matrix provides a compact representation of all members in

I: a subset of roles R′ ∈ I if and only if the columns in M (D ′) representing the elements of R′

are linearly independent. Hence, given an arbitrary R′ ⊆ R, there exists an algorithm that runs in

O (|R |O (1)) time and correctly outputs whether R′ ∈ I or not (see [9]).

5.3 Algorithm Description and Analysis
The whole algorithm for (α , β)-UAQ starts from the preprocessing described in Section 5.1 and

returns a partial solution R1 or concludes that the input instance is a no-instance. If R1 is returned,

then the algorithm constructs a constraint satisfaction matroid as in Section 5.2, and then uses the

DP algorithm described below to produce a partial solution R2 or concludes that the input instance

is a no-instance. If R2 is returned, then the whole algorithm returns R1 ∪ R2. We prove correctness

of the whole algorithm and evaluate its running time in Theorem 6.

Our algorithm considers possible sets of extra permissions that could be included in a solution.

Such a set must be a subset of P \ Pℓb and have cardinality no greater than kp . Accordingly, we
define Pgood = {Y ⊆ P \ Pℓb : |Y | ≤ kp }.

LetW ⊆ Pℓb ,Y ∈ Pgood and 0 ≤ i ≤ kr . We define the following set:

B[W ,Y , i] = {R′ ⊆ R |W ⊆ P (R′) ⊆ Pℓb ∪ Y , |R
′ | = i,R′ ∈ I},

where I is the family of independent sets ofM (D ′).
Note that if there exist i ∈ {0, . . . ,kr } and Y ∈ Pgood such that B[Pℓb ,Y , i] is non-empty, then

any member of B[Pℓb ,Y , i] provides a solution to the reduced (by the preprocessing) problem.

Let
ˆB[Pℓb ,Y , i] ⊆

kr−i
r ep B[Pℓb ,Y , i]. Observe that by Definition 3,

ˆB[Pℓb ,Y , i] , ∅ if and only if

B[Pℓb ,Y , i] , ∅.
The following observation is not hard to verify.

Proposition 1. Let Y ∈ Pgood andW ⊆ Pℓb . Then, the following statements hold true for i = 0:

• ifW = ∅, then ˆB[W ,Y , 0] = B[W ,Y , 0] = {∅};
• ifW , ∅, then ˆB[W ,Y , 0] = B[W ,Y , 0] = ∅.

Proof. IfW = ∅, then B[W ,Y , 0] = {∅} (since no role is required to authorize an empty set

of permissions). Hence, from Definition 3, we obtain that
ˆB[W ,Y , 0] = {∅}. IfW , ∅, then at

least one role is required to authorize the permission setW . Therefore, B[W ,Y , 0] = ∅. Hence, by

Definition 3, we obtain that
ˆB[W ,Y , 0] = ∅. □

We now describe our DP algorithm.

(1) First, for all ∅ ,W ⊆ Pℓb and Y ∈ Pgood , we initialize ˆB[∅,Y , 0] = {∅} and ˆB[W ,Y , 0] = ∅.
(2) Then, for all i = 1, 2, . . . ,kr , for every Y ∈ Pgood and for every W ⊆ Pℓb , we compute

ˆB[W ,Y , i] as follows:
(a) if for all r ∈ R such that P (r) ⊆ Y ∪ Pℓb , we have ˆB[W \ P (r),Y , i − 1] = ∅, then we set

ˆB[W ,Y , i] = ∅;

17

, , Crampton et al.

(b) otherwise there exists r ∈ R such that P (r) ⊆ Pℓb ∪ Y and
ˆB[W \ P (r),Y , i − 1] , ∅. Then,

we compute X[W ,Y , i] as

{A ∪ {r } | P (r) ⊆ Pℓb ∪ Y , ˆB[W \ P (r),Y , i − 1] , ∅,A ∈ ˆB[W \ P (r),Y , i − 1], r ∈ R \A} ∩ I (1)

and
ˆB[W ,Y , i] as ˆB[W ,Y , i] ⊆kr−irep X[W ,Y , i].

If
ˆB[Pℓb ,Y , i] , ∅ for some Y ∈ Pgood then return any role set in

ˆB[Pℓb ,Y , i] as R2 and halt.

(3) Return “no-instance”.

Note thatX[W ,Y , i] could contain up to |R |
(
kr
i−1

)
sets. But by Lemma 9, the size of

ˆB[W ,Y , i] is at

most just

(
kr
i

)
. So, we invoke Lemma 9, and store

ˆB[W ,Y , i] such that
ˆB[W ,Y , i] ⊆kr−ir ep X[W ,Y , i]

(informally,
ˆB[W ,Y , i] is a (kr − i)-representative family of X[W ,Y , i]).

Lemma 11. For everyW ⊆ Pℓb , Y ∈ Pgood and 0 ≤ i ≤ kr , we have ˆB[W ,Y , i] ⊆kr−ir ep B[W ,Y , i].

Proof. LetW ⊆ Pℓb , and Y ∈ Pgood . We prove this lemma by induction on i .

Base Case: The case i = 0 holds true due to Proposition 1.

Induction Hypothesis: Let i ≥ 1, and assume by induction hypothesis that for all j < i , and

for allW ′ ⊆W ,
ˆB[W ′,Y , j] ⊆kr−jr ep B[W

′,Y , j].

Induction Step: Let i ≥ 1. Recall that by the DP algorithm description
ˆB[W ,Y , i] ⊆kr−ir ep

X[W ,Y , i]. Thus, by Lemma 8, if X[W ,Y , i] ⊆kr−ir ep B[W ,Y , i] holds true then
ˆB[W ,Y , i] ⊆kr−ir ep

B[W ,Y , i]. Therefore, in the rest of the proof it suffices to show that X[W ,Y , i] ⊆kr−ir ep B[W ,Y , i].
Let X1 = {r1, . . . , ri } ∈ B[W ,Y , i] and X

′
1
= X1 \ {ri }. Let X2 be a set of at most kr − i roles such

thatX1∩X2 = ∅, andX1∪X2 ∈ I and letX ∗
2
= X2∪{ri }. Since ri authorizes P (ri), andX

′
1
authorizes

all permissions inW \ P (ri) and P (X
′
1
) \ Pℓb ⊆ Y , we have that X ′

1
∈ B[W \ P (ri),Y , i − 1].

By induction hypothesis,
ˆB[W \P (ri),Y , i−1] ⊆

kr−i+1
r ep B[W \P (ri),Y , i−1]. Hence, by Definition 3,

there exists X ∗
1
∈ ˆB[W \ P (ri),Y , i − 1] such that X ∗

1
∪ X ∗

2
∈ I and X ∗

1
∩ X ∗

2
= ∅. By (1), we have

X ∗
1
∪{ri } ∈ X[W ,Y , i]. The set of rolesX

∗
1
∪{ri } is such that (X

∗
1
∪{ri })∩X2 = ∅ andX

∗
1
∪{ri }∪X2 ∈ I.

Hence, X[W ,Y , i] ⊆kr−ir ep B[W ,Y , i]. This completes the proof. □

Theorem 6. The whole algorithm solves (α , β)-UAQ in time O∗ (2O (k
α
r +

ˆk)).

Proof. By Lemma 11, we have
ˆB[W ,Y , i] ⊆kr−irep B[W ,Y , i]. Hence, the algorithm correctly

computes partial solutions and if there exists R2 ∈ ˆB[Pℓb ,Y , i] for some Y ∈ Pgood and for some

0 ≤ i ≤ kr , then R1 ∪ R2 is a solution to the UAQ instance. (If no such R2 exists for any appropriate

Y then there is no solution to the instance.) Thus, the algorithm is correct.

The time taken to compute a solution is determined by the running times of the pre-processing

phase (O (αkr)), the computation of the matroid (polynomial in |R |) and the dynamic programming

phase.

From Theorem 5, we have |Pℓb | is O (k
α
r). Hence, there are 2

|Pℓb | = 2
O (kαr)

subsets of Pℓb and

there are at most 2
ˆk
subsets in P \ Pℓb . Hence, there are O

∗ (2O (k
α
r +

ˆk)) sets of the form B[W ,Y , i].
By (1),

|X[W ,Y , i]| ≤ |R |max

r ∈R
| ˆB[W \ P (r),Y , i − 1]| = O (2kr |R |).

Computing X[W ,Y , i] takes time polynomial in |X[W ,Y , i]| and thus time O∗ (2O (kr)).

We then compute
ˆB[W ,Y , i] such that

ˆB[W ,Y , i] ⊆kr−ir ep X[W ,Y , i] and store it in
ˆB[W ,Y , i].

Recall that from Lemma 10, ourmatroid is represented by an |R |×|R |-matrix. By Lemma 9, computing

18

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

ˆB[W ,Y , i] takes time

O∗ (2O (ωkr) |X[W ,Y , i]|(|R | + i)O (1)) = O∗ (2O (kr)).

Hence, computing every table entry takes time

O∗ (2O (k
α
r +

ˆk)
2
O (kr)) = O∗ (2O (k

α
r +

ˆk)).

Therefore, we can complete the dynamic programming phase (and hence the whole algorithm) in

O∗ (2O (k
α
r +

ˆk)) time. □

6 RELATEDWORK
The study of User Authorization Query began with work by Du and Joshi [12] in the context of

inter-domain role mapping. They showed that finding aminimal set of rolesR′ such that P (R′) = Pℓb
is NP-hard via a reduction fromMinimal Set Cover and proposed a polynomial-time algorithm

for computing approximate solutions. Crampton and Chen showed that several versions of UAQ,

including ones where P (R′) may be a superset of Plb wereNP-hard. This early work did not consider
SoD constraints.

Wickramaarachchi et al [25, 26] extended the definition of UAQ to include SoD constraints and

developed exact algorithms to solve UAQ, based on techniques used to solve CNF-SAT andMAXSAT.

Armando et al. and Lu et al. made improvements to these algorithms [2, 18, 19]. Recent work has

provided a comprehensive comparative analysis of methods for solving User Authorization

Query and developed a set of benchmarks for evaluating User Authorization Query solvers [1].

These results suggest that a reduction of User AuthorizationQuery to PMaxSat is currently

the most effective way of solving User AuthorizationQuery.

The focus of the above work was finding approximate and exact algorithms to solve User

Authorization Query. Mousavi and Tripunitara were the first to consider the parameterized

complexity of UAQ [23], and included constraints in the specification of the problem. They showed

the problem of deciding whether an instance has a solution is FPT if Pub is the small parameter,

essentially by considering all subsets of Pub . While it may be reasonable in certain cases, in general

Pub is not necessarily small.

In summary, existing work on User Authorization Query has mainly attempted to exploit

existing algorithms for related problems in order to solve User AuthorizationQuery, without

attempting to understand the inherent difficulty of User Authorization Query. In particular,

there has been little effort to better understand the complexity of User Authorization Query in

terms of each of its parameters. The exception to this is the work of Mousavi, which does explore

how the complexity of the problem is affected by the different parameters, although most of this

work used traditional methods of complexity analysis [22].

7 CONCLUDING REMARKS
Our work provides the first thorough attempt to investigate User AuthorizationQuery using

multi-variate complexity analysis. Our results suggest that it may be difficult to obtain a practical

FPT algorithm for User AuthorizationQuery in general. However, we have also shown that if

an RBAC configuration satisfies certain properties then we may be able to use an FPT algorithm to

solve instances of User AuthorizationQuery for that configuration.

One surprising conclusion of our work is the sharp contrast in FPT results for the workflow

satisfiability problem (WSP) and User Authorization Query. Informally, given a set of tasks T , a
set of usersU , an authorization relation A ⊆ U ×T (where u is authorized to perform t if and only

if (u, t) ∈ A), and a set of constraints C , an instance of WSP asks whether there exists a mapping

π : U → T such that all constraints in C are satisfied and (π (t), t) ∈ A for all t . WSP constraints

19

, , Crampton et al.

can, for example, require that the same user is not assigned to two particular tasks (a simple form

of separation of duty), although considerably more complex constraints are possible.

It is relatively easy to show that WSP is NP-hard, even when constraints are limited to the

simple separation of duty constraints described above [24]. Nevertheless, subsequent research has

shown that WSP is FPT (when the number of tasks is the small parameter) for all user-independent

constraints [5], which include the aforementioned simple separation of duty constraints as well as

most other constraints that are likely to arise in practice. Moreover, the FPT algorithms for WSP

are not just of theoretical interest. Experimental evaluations have shown that these algorithms

provide a more efficient solution for WSP than brute force algorithms and methods using SAT

solvers [5, 6, 16].

On the face of it, WSP appears to be more complex than User Authorization Query, not least

because the constraints in a WSP instance may be much more varied than those appearing in a

UAQ instance. And both problems require us to compute a solution set that is constrained by a

binary relation (the RPG in User AuthorizationQuery and the authorization relation in WSP)

and a set of constraints. However, our results show that User AuthorizationQuery remains a

hard problem for many RBAC configurations.

Informally, the source of the complexity seems to arise from the consequences of choosing a

particular element in a potential solution. In the case of WSP, choosing a user to perform a specific

task only means that we have to check attempts to allocate that user to other tasks, in order to

determine whether such an allocation would violate a constraint. This means that we can compute

all partitions of the set of steps such that each block in the partition could be assigned to a particular

user; roughly speaking, this is the basis of the FPT algorithms for WSP. In contrast, selecting a role,

so that a particular permission in Pℓb is activated, means (i) that potentially many other permissions

may be simultaneously activated, and (ii) other roles may become ineligible for consideration

because of the SoD constraints.

It would be convenient if |R | were the small parameter. We could compute a solution to User

Authorization Query simply by considering all possible subsets of R. But the application of

Reduction Rule 0 only eliminates roles that are assigned to a permission outside Pub . There is no
reason to assume that the size of the role set after these roles have been eliminated will be small,

given that multiple roles may be assigned to the same permission in Pub \ Pℓb .
Although the results obtained in this paper are mainly negative, and those that are positive

require strong restrictions on the User AuthorizationQuery instances, we believe that the work

provides useful insights into the difficulty of solving User AuthorizationQuery. In particular,

we believe these results supplement the recent work of Armando et al. [1] and may provide useful

input into evaluating User Authorization Query solvers and producing new benchmarks for

User AuthorizationQuery.

It is well-known that practitioners prefer to use general-purpose solvers for solving practical

problems rather than specialised algorithms. It has been shown in the literature, see e.g. [1] for

UAQ and [16] for the Workflow Satisfiability Problem, that appropriately chosen general-purpose

solvers perform reasonably well on moderate-size instances of tractable problems. Thus, it would

be interesting to see whether the state-of-the-art PMaxSAT solver used in [1] performs well on

instances of the UAQ problem of Section 5.

Acknowledgement. We are very thankful to the referees and Eduard Eiben for providing very

helpful suggestions, which improved the presentation. Research in this paper was supported by

Leverhulme Trust grant RPG-2018-161.

20

Towards Better Understanding of User AuthorizationQuery Problem via Multi-variable Complexity Analysis , ,

REFERENCES
[1] Alessandro Armando, Giorgia Gazzarata, and Fatih Turkmen. 2020. Benchmarking UAQ Solvers. In 25th ACM

Symposium on Access Control Models and Technologies, SACMAT 2020, Proceedings. ACM, 145–152.

[2] Alessandro Armando, Silvio Ranise, Fatih Turkmen, and Bruno Crispo. 2012. Efficient run-time solving of RBAC user

authorization queries: Pushing the envelope. In Second ACM Conference on Data and Application Security and Privacy,
CODASPY 2012. ACM, 241–248. https://doi.org/10.1145/2133601.2133631

[3] Clara Bertolissi, Daniel Ricardo dos Santos, and Silvio Ranise. 2018. Solving Multi-Objective Workflow Satisfiability

Problems with Optimization Modulo Theories Techniques. In Proceedings of the 23nd ACM on Symposium on Access
Control Models and Technologies, SACMAT 2018, Indianapolis, IN, USA, June 13-15, 2018, Elisa Bertino, Dan Lin, and

Jorge Lobo (Eds.). ACM, 117–128. https://doi.org/10.1145/3205977.3205982

[4] Liang Chen and Jason Crampton. 2009. Set Covering Problems in Role-Based Access Control. In Computer Security -
ESORICS 2009, 14th European Symposium on Research in Computer Security, Saint-Malo, France, September 21-23, 2009.
Proceedings (Lecture Notes in Computer Science, Vol. 5789), Michael Backes and Peng Ning (Eds.). Springer, 689–704.

[5] David Cohen, Jason Crampton, Andrei Gagarin, Gregory Gutin, and Mark Jones. 2014. Iterative Plan Construction for

the Workflow Satisfiability Problem. J. Artif. Intell. Res. 51 (2014), 555–577. https://doi.org/10.1613/jair.4435

[6] David A. Cohen, Jason Crampton, Andrei Gagarin, Gregory Gutin, and Mark Jones. 2016. Algorithms for the workflow

satisfiability problem engineered for counting constraints. J. Comb. Optim. 32, 1 (2016), 3–24.
[7] Jason Crampton, Andrei Gagarin, Gregory Gutin, Mark Jones, and Magnus Wahlström. 2016. On the Workflow

Satisfiability Problem with Class-Independent Constraints for Hierarchical Organizations. ACM Trans. Priv. Secur. 19, 3
(2016), 8:1–8:29. https://doi.org/10.1145/2988239

[8] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. 2015. Parameter-
ized Algorithms. Springer.

[9] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer.
[10] R.G. Downey and M.R. Fellows. 1999. Parameterized Complexity. Springer. https://doi.org/10.1007/978-1-4612-0515-9

[11] R.G. Downey and M.R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer.
[12] Siqing Du and James B. D. Joshi. 2006. Supporting authorization query and inter-domain role mapping in presence of

hybrid role hierarchy. In 11th ACM Symposium on Access Control Models and Technologies, SACMAT 2006, Lake Tahoe,
California, USA, June 7-9, 2006, Proceedings, David F. Ferraiolo and Indrakshi Ray (Eds.). ACM, 228–236.

[13] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. Efficient Computation of Representative

Families with Applications in Parameterized and Exact Algorithms. J. ACM 63, 4 (2016), 29:1–29:60.

[14] Gregory Gutin and Daniel Karapetyan. 2020. Constraint Branching in Workflow Satisfiability Problem. In Proceedings
of the 25th ACM on Symposium on Access Control Models and Technologies, SACMAT 2020. 93–103.

[15] Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. 2019. Parameterized Complexity of Conflict-Free Set

Cover. In Computer Science - Theory and Applications - 14th International Computer Science Symposium in Russia, CSR
2019, Novosibirsk, Russia, July 1-5, 2019, Proceedings. 191–202.

[16] Daniel Karapetyan, Andrew J. Parkes, Gregory Z. Gutin, and Andrei Gagarin. 2019. Pattern-Based Approach to the

Workflow Satisfiability Problem with User-Independent Constraints. J. Artif. Intel. Res. 66 (2019), 85–122.
[17] Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. 2018. Deterministic Truncation of Linear

Matroids. ACM Trans. Algorithms 14, 2 (2018), 14:1–14:20.
[18] Jianfeng Lu, Jianmin Han, Wei Chen, and JinWei Hu. 2012. Safety and availability checking for user authorization

queries in RBAC. International Journal of Computational Intelligence Systems 5, 5 (2012), 860–867.
[19] Jianfeng Lu, James B. D. Joshi, Lei Jin, and Yiding Liu. 2015. Towards complexity analysis of User Authorization Query

problem in RBAC. Computers & Security 48 (2015), 116–130.

[20] Jonathan D. Moffett. 1998. Control Principles and Role Hierarchies. In Proceedings of the Third ACM Workshop on
Role-Based Access Control (Fairfax, Virginia, USA). Association for Computing Machinery, New York, NY, USA, 63âĂŞ69.

https://doi.org/10.1145/286884.286900

[21] Jonathan D. Moffett and Emil C. Lupu. 1999. The Uses of Role Hierarchies in Access Control. In Proceedings of the
Fourth ACM Workshop on Role-Based Access Control (Fairfax, Virginia, USA). Association for Computing Machinery,

New York, NY, USA, 153–160. https://doi.org/10.1145/319171.319186

[22] Nima Mousavi. 2014. Algorithmic Problems in Access Control. Ph.D. Dissertation. University of Waterloo.

[23] Nima Mousavi and Mahesh V. Tripunitara. 2012. Mitigating the Intractability of the User Authorization Query

Problem in Role-Based Access Control (RBAC). In Network and System Security - 6th International Conference, NSS 2012.
Proceedings (Lecture Notes in Computer Science, Vol. 7645), Li Xu, Elisa Bertino, and Yi Mu (Eds.). Springer, 516–529.

[24] Qihua Wang and Ninghui Li. 2010. Satisfiability and Resiliency in Workflow Authorization Systems. ACM Trans. Inf.
Syst. Secur. 13, 4 (2010), 40. https://doi.org/10.1145/1880022.1880034

21

https://doi.org/10.1145/2133601.2133631
https://doi.org/10.1145/3205977.3205982
https://doi.org/10.1613/jair.4435
https://doi.org/10.1145/2988239
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1145/286884.286900
https://doi.org/10.1145/319171.319186
https://doi.org/10.1145/1880022.1880034

, , Crampton et al.

[25] Guneshi T. Wickramaarachchi, Wahbeh H. Qardaji, and Ninghui Li. 2009. An efficient framework for user authorization

queries in RBAC systems. In 14th ACM Symposium on Access Control Models and Technologies, SACMAT 2009, Stresa,
Italy, June 3-5, 2009, Proceedings, Barbara Carminati and James Joshi (Eds.). ACM, 23–32.

[26] Yue Zhang and James B. D. Joshi. 2008. UAQ: A framework for user authorization query processing in RBAC

extended with hybrid hierarchy and constraints. In 13th ACM Symposium on Access Control Models and Technologies,
SACMAT 2008, Estes Park, CO, USA, June 11-13, 2008, Proceedings, Indrakshi Ray and Ninghui Li (Eds.). ACM, 83–92.

https://doi.org/10.1145/1377836.1377850

22

https://doi.org/10.1145/1377836.1377850

	Abstract
	1 Introduction
	1.1 User Authorization Query Problem and Its Reduction
	1.2 Our results

	2 Preliminaries
	3 Parameterized Hardness of UAQs without SoD constraints
	4 W[1]-hardness when RPG is K2,2-free
	5 Fixed-Parameter Tractability when RPG is K,-free and Constraints are Non-intersecting
	5.1 Preprocessing
	5.2 Encoding Candidate Solutions as a Matroid
	5.3 Algorithm Description and Analysis

	6 Related Work
	7 Concluding Remarks
	References

