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Abstract. A key result in the field of kernelization, a subfield of parameterized complexity, states that the classic
Disjoint Cycle Packing problem, i.e. finding k vertex disjoint cycles in a given graph G, admits no polynomial kernel
unless NP ⊆ coNP/poly. However, very little is known about this problem beyond the aforementioned kernelization lower
bound (within the parameterized complexity framework). In the hope of clarifying the picture and better understanding
the types of “constraints” that separate “kernelizable” from “non-kernelizable” variants of Disjoint Cycle Packing,
we investigate two relaxations of the problem. The first variant, which we call Almost Disjoint Cycle Packing,
introduces a “global” relaxation parameter t. That is, given a graph G and integers k and t, the goal is to find at least
k distinct cycles such that every vertex of G appears in at most t of the cycles. The second variant, Pairwise Disjoint
Cycle Packing, introduces a “local” relaxation parameter and we seek at least k distinct cycles such that every two
cycles intersect in at most t vertices. While the Pairwise Disjoint Cycle Packing problem admits a polynomial
kernel for all t ≥ 1, the kernelization complexity of Almost Disjoint Cycle Packing reveals an interesting spectrum
of upper and lower bounds. In particular, for t = k

c
, where c could be a function of k, we obtain a kernel of size

O(2c
2
k7+c log3 k) whenever c ∈ o(

√
k). Thus the kernel size varies from being sub-exponential when c ∈ o(

√
k), to

quasi-polynomial when c ∈ o(log` k), ` ∈ R+, and polynomial when c ∈ O(1). We complement these results for Almost
Disjoint Cycle Packing by showing that the problem does not admit a polynomial kernel whenever t ∈ O(kε), for
any 0 ≤ ε < 1, unless NP ⊆ coNP/poly.
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1. Introduction. Polynomial-time preprocessing is one of the widely used methods to tackle
NP-hard problems in practice, as it plays well with exact algorithms, heuristics, and approximation
algorithms. Until recently, there was no robust mathematical framework to analyze the performance
of preprocessing routines. Progress in parameterized complexity [12] made such an analysis possible.
In parameterized complexity, each problem instance is coupled with an integer k, which is called as
the parameter, and the parameterized problem is said to admit a kernel if there is a polynomial-
time algorithm, called a kernelization algorithm, that reduces the input instance down to an instance
whose size is bounded by a function f(k) in k, while preserving the answer. Such an algorithm is
called an f(k)-kernel for the problem. If f(k) is a polynomial, quasi-polynomial, subexponential,
or exponential function of k, we say that this is a polynomial, quasi-polynomial, subexponential, or
exponential kernel, respectively. Over the last decade or so, kernelization has become a very active
field of study, especially with the development of complexity-theoretic tools to show that a problem
does not admit a polynomial kernel [4, 13, 17, 20], or a kernel of a specific size [9, 10, 21]. We refer
the reader to the survey articles by Kratsch [22] and Lokshtanov et al. [23] for recent developments.

One of the first and important problems to which the lower-bounds machinery was applied is the
NP-complete Disjoint Cycle Packing problem. In the Disjoint Cycle Packing problem, we
are given as input an n-vertex graph G and an integer k, and the task is to find a collection C of at
least k pairwise disjoint vertex sets of G, such that every set C ∈ C is a cycle in G. The Disjoint
Cycle Packing problem can be solved in O(kk log knO(1)) using dynamic programming over graphs
of bounded treewidth [3, 5]. Bodlaender et al. [6] showed that, when parameterized by k, Disjoint
Cycle Packing does not admit a polynomial kernel unless NP ⊆ coNP/poly (and the polynomial
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Fig. 1. Spectrum of kernelization algorithms for Almost Disjoint Cycle Packing as c grows in the denominator
of t = k

c
.

hierarchy collapses to its third level, which is considered very unlikely). Beyond the aforementioned
negative result for polynomial kernels and the folklore O(kk log knO(1))-time algorithm, the Disjoint
Cycle Packing problem has remained mostly unexplored from the viewpoint of parameterized
complexity.

Our problems and results. In this paper we study two variants of Disjoint Cycle Packing,
obtained by relaxing the disjointness constraint. In particular, we focus on the kernelization complex-
ity of the Disjoint Cycle Packing problem by considering two relaxed versions of the problem,
one with a “local” relaxation parameter and the other with a “global” relaxation parameter. In the
locally relaxed variant, which we call Pairwise Disjoint Cycle Packing, the goal is to find at
least k distinct cycles in a graph G such that they pairwise intersect in at most t vertices.

Pairwise Disjoint Cycle Packing Parameter: k
Input: An undirected (multi) graph G and integers k and t.
Question: Does G have at least k distinct cycles C1, . . . , Ck such that |V (Ci) ∩ V (Cj)| ≤ t for
all i 6= j?

We consider two cycles to be distinct whenever their edge sets differ by at least one element. Note
that when t = 0, Pairwise Disjoint Cycle Packing corresponds to the original Disjoint Cycle
Packing problem. However, when t = |V (G)| the Pairwise Disjoint Cycle Packing problem
is solvable in time polynomial in |V (G)| and k since we can enumerate distinct cycles in a graph
with polynomial delay [26]. In other words, any k distinct cycles in a graph will trivially pairwise
intersect in at most |V (G)| vertices. We show that Pairwise Disjoint Cycle Packing remains
NP-complete when t = 1. Then, we complement this result by showing that the problem admits a
polynomial kernel for t = 1 and a polynomial compression for t ≥ 2. An interesting problem which
remains unclear is to determine what value of t separates NP-hard instances from polynomial-time
solvable ones.

The second relaxation we consider is Almost Disjoint Cycle Packing. The goal in Almost
Disjoint Cycle Packing is to determine whether G contains at least k distinct cycles such that
every vertex in V (G) appears in at most t of them. As we shall see, the kernelization complexity
landscape for Almost Disjoint Cycle Packing is much more diverse than that of Pairwise
Disjoint Cycle Packing. In some sense, this suggests that the global relaxation parameter does a
“better job” of capturing the “hardness” of the original problem.
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Almost Disjoint Pairwise Disjoint
Cycle Packing Cycle Packing

NP-complete Poly. kernel NP-complete Poly. kernel

t = 0 Yes No
t = 1 Yes No Yes Yes

t = O(1) Yes No Open Yes
t = O(kε) Yes No Open Yes
t = k

c Open Yes Open Yes

Table 1
Summary of our results and some open problems.

Almost Disjoint Cycle Packing Parameter: k
Input: An undirected (multi) graph G and integers k and t.
Question: Does G have at least k distinct cycles C1, . . . , Ck such that every vertex in V (G)
appears in at most t of them?

Again, for t = 1, Almost Disjoint Cycle Packing corresponds to Disjoint Cycle Packing
and when t = k the problem is solvable in time polynomial in |V (G)| and k by simply enumerating
distinct cycles. However, and rather surprisingly, we show that t has to be “very close” to k for this
relaxation to become “easier” than the original problem, at least in terms of kernelization. In fact,
we show that as long as t = O(k1−ε), where 0 < ε ≤ 1, Almost Disjoint Cycle Packing remains
NP-complete and admits no polynomial kernel unless NP ⊆ coNP/poly. We complement our hardness
result by a spectrum of kernel upper bounds. To that end, we consider the case t = k

c , where c is
a constant or a function of k. We show that we can (in polynomial time) compress an instance of

Almost Disjoint Cycle Packing into an equivalent instance with O(2c
2

k7+c log3 k) vertices. This
implies polynomial, quasi-polynomial, or subexponential size kernels for Almost Disjoint Cycle
Packing, depending on whether c is a constant, c ∈ o(log k), or c ∈ o(

√
k), respectively. It remains

open whether the problem is in P or NP-hard for t = k
c , when c is a constant. A high level summary

of our results for Almost Disjoint Cycle Packing is given in Figure 1.
Related Results. Our results also fit into the relatively new direction of research that is concerned

with the parameterized complexity of problems with relaxed packing/covering constraints. For several
important problems (that we need to solve), there are settings in which we need not be very strict
about constraints. This is particularly interesting for “strict” problems where, e.g., (a) it is known
that no polynomial kernels are possible unless NP ⊆ coNP/poly, or where (b) the algorithm with the
best running time matches the known lower bound, or where (c) no considerable improvements have
been made either algorithmically or in terms of kernel upper/lower bounds. The Disjoint Cycle
Packing problem, which is the main subject of this work, falls into categories (a) and (c). Before we
delve into the technical details of our results, let us look at some examples where the introduction of
relaxation parameters has been successful. Abasi et al. [1], followed by Gabizon et al. [18], studied
a generalization of the k-Path problem, namely r-Simple k-Path, where the task is to find a walk
of length k that never visits any vertex more than r times. Here r is the relaxation parameter. By
definition, the generalized problem is computationally harder than the original. However, observe
that for r = 1 the problem is exactly the problem of finding a simple path of length k in G. On the
other hand, for r = k the problem is easily solvable in polynomial time, as any walk in G of length k
will suffice. In some sense, the “further away” an instance of the generalized problem is from being
an instance of the original, the easier the instance is. Put differently, gradually increasing r from 1 to
k should make the problem computationally easier. This intuition was confirmed by the authors by
providing, amongst other results, algorithms for the generalized problem whose worst-case running
time matches the running time of the best algorithm for the original problem up to constants in the
exponent, and improves significantly as the relaxation parameter increases. Also closely related is
the work of Romero et. al. [28, 29] and Fernau et al. [15] who studied relaxations of graph packing
problems allowing certain overlaps.
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2. Preliminaries. We let N denote the set of natural numbers, R denote the set of real numbers,
R+ denote the set of non-zero positive real numbers, and R≥1 denote the set of real numbers greater
than or equal to one. For r ∈ N, by [r] we denote the set {1, 2, . . . , r}.

Graphs. We use standard terminology from the book of Diestel [11] for those graph-related terms
which are not explicitly defined here. We only consider finite graphs possibly having loops and multi-
edges. For a graph G, V (G) and E(G) denote the vertex and edge sets of the graph G, respectively.
For a vertex v ∈ V (G), we use dG(v) to denote the degree of v, i.e the number of edges incident on
v, in the (multi) graph G. We also use the convention that a loop at a vertex v contributes two to its
degree. For a vertex subset S ⊆ V (G), G[S] and G − S are the graphs induced on S and V (G) \ S,
respectively. For a vertex subset S ⊆ V (G), we let NG(S) and NG[S] denote the open and closed
neighborhood of S in G. That is, NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and NG[S] = NG(S) ∪ S.
For a graph G and an edge e ∈ E(G), G/e denotes the graph obtained by contracting e in G (loops
and multi-edges are preserved).

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that (vi, vi+1) is an edge
for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that
(vi, v(i+1) mod `+1) is an edge for all 0 ≤ i ≤ `. We note that both a double edge and a loop are
cycles. If P is a path from a vertex u to a vertex v in graph G then we say that u and v are the
end vertices of the path P and P is a (u, v)-path. For a path or a cycle Q, we use V (Q) to denote
the set of vertices in Q and the length of Q is denoted by |Q| (i.e, |Q| = |V (Q)|). For a path or a
cycle Q we use NG(Q) and NG[Q] to denote the sets NG(V (Q)) and NG[V (Q)], respectively. For
a collection of paths/cycles Q, we use |Q| to denote the number of paths/cycles in Q and V (Q) to
denote the set

⋃
Q∈Q V (Q). We sometimes refer to a path or a cycle Q as a |Q|-path or |Q|-cycle.

Given a vertex v ∈ V (G), a v-flower of order k is a set of k cycles in G whose pairwise intersection
is exactly {v}. We say a set of distinct vertices P = {v1, . . . , v`} in G forms a degree-two path if P is
a path and all vertices {v1, . . . , v`} have degree exactly two in G. We say P is a maximal degree-two
path if no proper superset of P also forms a degree-two path. Finally, a feedback vertex set is a subset
S of vertices such that G− S is a forest.

Theorem 2.1 (see [14]). There exists a constant c such that every (multi) graph either contains
k vertex disjoint cycles or it has a feedback vertex set of size at most ck log k. Moreover, there is a
polynomial-time algorithm that takes a graph G and an integer k as input, and outputs either k vertex
disjoint cycles or a feedback vertex set of size at most ck log k.

Parameterized Complexity. We only state the basic definitions and general results needed for our
purposes. For more details on parameterized complexity in general, and kernelization in particular,
we refer the reader to the books of Downey and Fellows [12], Flum and Grohe [16], Niedermeier [25],
and the more recent book by Cygan et al. [8].

Definition 1. A reduction rule that replaces an instance (I, k) of a parameterized language L by
a new instance (I ′, k′) is said to be sound or safe if (I, k) ∈ L if and only if (I ′, k′) ∈ L.

Definition 2. A polynomial compression of a parameterized language L ⊆ Σ∗×N into a language
R ⊆ Σ∗ is an algorithm that takes as input an instance (I, k) ∈ Σ∗ × N, works in time polynomial in
|I|+ k, and returns a string I ′ such that:

• |I ′| ≤ p(k) for some polynomial p(.), and
• I ′ ∈ R if and only if (I, k) ∈ L.

In case |Σ| = 2, the polynomial p(.) is called the bitsize of the compression.

Note that polynomial compressions are a generalization of kernels and being able to rule out a
compression algorithm automatically rules out a kernelization algorithm. Like in classical complexity,
in the world of kernel lower bounds, it is often easier to “transfer” hardness from one problem to
another. To be able to do so, we need an appropriate notion of reduction.

Definition 3. Let L,R ⊆ Σ∗ × N be two parameterized problems. An algorithm A is called a
polynomial parameter transformation (PPT, for short) from L to R if, given an instance (I, k) of
problem L, A works in polynomial time and outputs an equivalent instance (I ′, k′) of problem R, i.e.,
(I, k) ∈ L if and only if (I ′, k′) ∈ R, such that k′ ≤ p(k) for some polynomial p(.).

Theorem 2.2 (see [8]). Let L,R ⊆ Σ∗×N be two parameterized problems and assume that there
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exists a polynomial parameter transformation from L to R. Then, if L does not admit a polynomial
compression (into any language), neither does R.

3. Almost Disjoint Cycle Packing. As previously noted, Bodlaender et al. [6] showed that
Disjoint Cycle Packing admits no polynomial kernel unless NP ⊆ coNP/poly. On the other hand,
finding k distinct cycles in a graph is solvable in time polynomial in n = |V (G)| and k [26]. The
intuition is that the more cycles we allow a vertex to belong to, the easier the problem of finding k
distinct cycles should become. In this section, we study the spectrum of kernelization algorithms for
Almost Disjoint Cycle Packing based on the “distance” between k and t. Recall that given an
instance (G, k, t) of Almost Disjoint Cycle Packing, our goal is to find at least k distinct cycles
such that each vertex appears in at most t of them. To formalize the notion of distance between k
and t, we define the following class of problems.

Let L = {(G, k, t) | G has k cycles such that every vertex appears in at most t of them}. Basi-
cally, L is the language Almost Disjoint Cycle Packing. For a non-decreasing and polynomial-
time computable function f : N → R+ (polynomial in k), we define the following sub-language of
L.

Lf = {(G, k, t) | (G, k, t) ∈ L and t = dk/f(k)e}.

When f is the identity function, i.e. when f(k) = k, Lf is exactly the Disjoint Cycle Packing
problem, which is known not to admit a polynomial kernel [6]. In Section 3.1, we show that even
when f(k) = kε, for any fixed 0 < ε ≤ 1, Lf (or equivalently Almost Disjoint Cycle Packing
with t = k1−ε) is NP-complete and does not admit a polynomial kernel unless NP ⊆ coNP/poly. If
f = a (a constant function), where a ≤ 1 and a ∈ R+, then Lf can be decided in polynomial time
(as finding any k distinct cycles is enough). This implies that for f = a we have a constant kernel.
In Section 3.2, we obtain a polynomial kernel for f = c (another constant function), where c > 1 and
c ∈ R. In fact, our result implies that for f ∈ O(1), f ∈ o(log` k) (` ∈ N), or f ∈ o(

√
k), we can

(in polynomial time) compress an instance of Almost Disjoint Cycle Packing into an equivalent
instance of polynomial, quasi-polynomial, or subexponential size, respectively (see Figure 1).

Before we consider the kernelization complexity of the Almost Disjoint Cycle Packing prob-
lem, we first show, using standard arguments, that the problem is fixed-parameter tractable when
parameterized by k, i.e., the problem can be solved in f(k)nO(1) time, where n = |V (G)| and f is
a computable function. Armed with Theorem 2.1, we can assume that, for an instance (G, k, t) of
Almost Disjoint Cycle Packing, the treewidth of G is at most O(k log k); as G has a feedback
vertex set of size at most O(k log k). Courcelle’s Theorem [7] gives a powerful way of quickly showing
that a problem is fixed-parameter tractable on bounded treewidth graphs. That is, it suffices to show
that our problem can be expressed in monadic second-order logic (MSO2). We only briefly review the
syntax and semantics of MSO2. The reader is referred to the excellent survey by Martin Grohe [19]
for more details. Sentences in MSO2 contain quantifiers, logical connectives (¬, ∨, and ∧), vertex
variables, vertex set variables, edge set variables, binary relations ∈ and =, and the atomic formula
E(u, v) expressing that u and v are adjacent. If a graph property can be described in this language,
then this description can be made algorithmic:

Theorem 3.1 (see [7]). If a graph property can be described as a formula φ in the monadic
second-order logic of graphs, then it can be recognized in time f(||φ||, tw(G))(|E(G)| + |V (G)|) if a
given graph G has this property, where f is a computable function, ||φ|| is the length of the encoding
of φ as a string, and tw(G) is the treewidth of G.

Lemma 3.1. Almost Disjoint Cycle Packing can be solved in f(k)nO(1) time, for some
computable function f . In other words, the problem is fixed-parameter tractable when parameterized
by k.

Proof. Given an instance (G, k, t) of Almost Disjoint Cycle Packing, we construct a formula
φ such that ||φ|| is bounded by an exponential function in k and t. Given that t ≤ k and that the
treewidth of G is at most O(k log k), applying Theorem 3.1 completes the proof.
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We set

φ = ∃C1
. . . ∃Ck

(
∀v∈V (G) cap(v, C1, . . . , Ck)

∧
1≤i≤k

cycle(Ci)
∧

1≤i 6=j≤k
distinct(Ci, Cj)

)
where Ci ⊆ E(G), cycle(Ci) is true if and only if Ci is a cycle, distinct(Ci, Cj) is true if and only if Ci
and Cj are distinct (as edge sets), and cap(v, C1, . . . , Ck) is true if and only if v appears in at most t
cycles. Formally, we set

cycle(Ci) = connected(Ci) ∧ not-empty(Ci) ∧ (∀v degree-two(v, Ci) ∨ v 6∈ Ci)

distinct(Ci, Cj) = (∃e∈Ci∀e′∈Cje 6= e′) ∨ (∃e∈Cj∀e′∈Cie 6= e′)

cap(v, C1, . . . , Ck) =
∧

S={i1,...,it}⊆([k]
t )

appears-in(v, S)→ misses(v, [k] \ S).

In order to guarantee that Ci is a cycle we make sure that it induces a non-empty (not-empty(Ci))
connected graph (connected(Ci)) and that every vertex v is either incident to exactly two edges of
Ci (degree-two(v, Ci)) or not in Ci. The formula distinct(Ci, Cj) is true if and only if the symmetric

difference of Ci and Cj contains at least one edge. For a set S = {i1, . . . , it} ⊆
(
[k]
t

)
, appears-in(v, S)

is true if and only if vertex v appears in all cycles Ci1 , . . ., Cit . The formula misses(v, [k] \ S) is true
if and only v does not belong to any of the cycles in {C1, . . . , Ck} \ {Ci1 , . . . , Cit}. It is not hard to
see that G |= φ if and only if (G, k, t) is a yes-instance. Furthermore, note that ||φ|| depends only on
k and t ≤ k.

3.1. Refuting polynomial kernels for t = O(k1−ε). We now show that Almost Disjoint
Cycle Packing restricted to Lf , where f(k) = kε, does not admit a polynomial kernel, for any
0 < ε ≤ 1, unless NP ⊆ coNP/poly. Here k is the number of required cycles and t = k

f(k) = k1−ε

is the maximum number of cycles a vertex can belong to. Below we define the Disjoint Factors
problem [6] which is known to admit no polynomial compression unless NP ⊆ coNP/poly.

Let Σq be an alphabet set of q elements. By Σ∗q we denote the set of all strings over Σq. A
factor of a string ȳ = y1y2 . . . yn ∈ Σ∗q is a pair (s, e), where s, e ∈ [n] and s < e, such that
ysys+1 . . . ye is a substring of ȳ and ys = ye. Two factors (s, e) and (s′, e′) of ȳ are said to be disjoint
if {s, s+ 1, . . . , e} ∩ {s′, s′ + 1, . . . , e′} = ∅. The string ȳ is said to have disjoint factors over Σq if for
all x ∈ Σq there is a factor (sx, ex) such that ysx = yex = x, and for all distinct x, x̂ ∈ Σq, (sx, ex)
and (sx̂, ex̂) are disjoint factors.

Disjoint Factors Parameter: q
Input: Alphabet set Σq, string ȳ ∈ Σ∗q .
Question: Does ȳ have disjoint factors over Σq?

Construction. We give a polynomial parameter transformation from an instance (Σq, ȳ) of Dis-
joint Factors to an instance (G, k, t) of Almost Disjoint Cycle Packing. For technical reasons,
we will assume that t − 1 = 2l, for some l ∈ N. Note that this can be achieved by at most doubling
the value of t while keeping t in O(k1−ε). We let l = log2(t − 1). The end goal will be to construct
a graph in which we have to find k cycles such that every vertex appears in at most t = O(k1−ε) of
them.

The reduction is as follows. Let Σq = {x1, x2, . . . xq}. We create a vertex x̂i ∈ V (G) corresponding
to each element xi, where i ∈ [q]. For ȳ = y1y2 . . . yn ∈ Σ∗q we create a path Py = (u, ŷ1, ŷ2, . . . ŷn, u

′)
by adding two new vertices u and u′. We add an edge between x̂i and ŷj , for i ∈ [q] and j ∈ [n], if and
only if xi = yj . We also add four more vertices u1, u2, u′1, and u′2 to V (G) and add edges (u1, u2),
(u2, u), (u, u1), (u′1, u

′
2), (u′2, u

′), and (u′, u′1) to E(G) (see Figure 2). For each xi ∈ Σq, we attach t−1

triangles to x̂i, i.e. we add edges {(z1i , z̃1i ), (z2i , z̃
2
i ), . . . , (zt−1i , z̃t−1i )} and (zji , x̂i), (x̂i, z̃

j
i ), for j ∈ [t−1].

Next, we create a path Pw = (w1, w
′
1, w2, w

′
2, . . . , wl, w

′
l) in G. We add a set R = {ri | i ∈ [l]} of l

independent vertices and for i ∈ [l], we add the edges (wi, ri) and (w′i, ri) to E(G). Finally, we add
edges (u,w1) and (w′l, u

′) (see Figure 2). We set k = tq + t+ l + 1. This completes the construction.
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Fig. 2. An instance (G, k = tq + t + l + 1, t) of Almost Disjoint Cycle Packing from an instance (Σq , ȳ) of
Disjoint Factors.

In what follows, we let (G, k, t) denote an instance of Almost Disjoint Cycle Packing given by
the above construction for an instance (Σq, ȳ) of Disjoint Factors. The next proposition follows
by construction.

Proposition 1. Let P = (s, a1, a
′
1, a2, a

′
2, . . . , an, a

′
n, s
′) be a path and B = {bi | i ∈ [n]} be a set

of independent vertices. Let H be the graph consisting of path P , the set B, and, for i ∈ [n], the edges
(ai, bi) and (a′i, bi). Then, for each B′ ⊆ B, there exists a unique path PB′ between s and s′ such that
V (PB′)∩B = B′. Moreover, the set B = {PB′ | B′ ⊆ B} is the set of all possible paths between s and
s′ in H.

Applying Proposition 1 to G, for each R′ ⊆ R, we have a (unique) cycle CR′ which contains all
the vertices in V (Py), all the vertices in Pw, and exactly the vertices of the set R′ from R. We define
a family of cycles R = {CR′ | R′ ⊆ R} ∪ {(wi, w′i, ri) | i ∈ [l]}. Note that |R| = 2l + l = t+ l − 1 and
each C ∈ R is a cycle in G. The intuition of having the set of cycles {CR′ | R′ ⊆ R} in G is that
each vertex in the path Py appears in t− 1 of these cycles, and can therefore participate in at most
one additional cycle (which contains vertices in V (Py)). Our end goal is to associate this extra cycle

with a factor. We let U = {(u, u1, u2), (u′, u′1, u
′
2)} and Z = {(zji , z̃ji , x̂i) | i ∈ [q], j ∈ [t − 1]}. Note

that each C ∈ U ∪ Z forms a cycle in G.

Lemma 3.2. If (G, k = tq+ t+ l+1, t) is a yes-instance of Almost Disjoint Cycle Packing
then there is a solution containing all cycles in Z ∪ U .

Proof. Let S be the set of k̂ ≥ k cycles in G such that every vertex belongs to at most t cycles
in S. We create another solution S ′ with k′ cycles such that k′ ≥ k̂ and Z ∪ U ⊆ S ′. Initially, we
have S ′ = S. Suppose for some i ∈ [q] and j ∈ [t − 1], cycle (zji , z̃

j
i , x̂i) /∈ S. If x̂i belongs to less

than t cycles in S, then we can add (zji , z̃
j
i , x̂i) to S ′ and obtain a larger solution. Otherwise, let Ci

be the set of cycles in S \ (Z ∪ U) in which x̂i is present. Pick any cycle C ∈ Ci and replace it by
(zji , z̃

j
i , x̂i) in S ′. Observe that x̂i separates zji and z̃ji from the rest of the graph. Therefore, there is a

unique (simple) cycle in G containing zji and z̃ji . Also, we can do the above replacement at most t−1
times. This implies that, even after the replacement, every vertex appears in at most t cycles in S ′.
A similar argument can be given for cycles in U . Therefore, we can obtain a solution S ′ consisting of
k′ cycles, where k′ ≥ k̂, Z ∪ U ⊆ S ′, and every vertex appears in at most t of the cycles.

Lemma 3.3. If (G, k = tq+ t+ l+1, t) is a yes-instance of Almost Disjoint Cycle Packing
and S is a set of k cycles such that every vertex appears in at most t of the cycles then S contains
all the cycles in R.

Proof. Let S be a set of k cycles in G such that every vertex v ∈ V (G) belongs to at most t
cycles in S. Observe that, for i ∈ [q], x̂i can appear in at most t cycles in S. Therefore, the number
of cycles C ∈ S such that V (C) ∩ {x̂i | i ∈ [q]} 6= ∅ is at most tq.
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Since u is a cut vertex separating u1 and u2 from the rest of the graph, the only cycle containing
both u1 and u2 is (u, u1, u2). Similarly, the only cycle containing both u′1 and u′2 is (u′, u′1, u

′
2).

Therefore, the remaining cycles in S (not considered so far) are cycles in G′ = G[V ′] as well, where
V ′ = R ∪ V (Pw) ∪ V (Py).

By construction Pw and Py are induced paths in G′ (and in G). Moreover, vertices in V (Py) are
degree-two vertices in G′. Therefore, a cycle in G′ either contains all the vertices from Py or none of
the vertices in Py. By Proposition 1, the number of distinct paths (excluding Py) between u and u′

(i.e. the start and end vertices of Py) is 2l = t− 1. Observe that each of these paths forms a cycle C
in G′ along with the path Py and C ∈ R. This implies that the number of cycles containing vertices
from V (Py) is t − 1. The cycles in G′ which do not contain vertices from path Py are the cycles in
G′[Pw ∪R]. Given that Pw is an induced path in G′[Pw ∪R], the only cycles that G′[Pw ∪R] contains
are the vertex disjoint cycles formed by wi, w

′
i, ri, for i ∈ [l]. Also, for each i ∈ [l], (wi, w

′
i, ri) ∈ R.

Note that the vertices in V (Pw) ∪ R belong to exactly t cycles in R. Consequently, if S does not
contain all cycles in R then |S| < tq + 2 + t− 1 + l = tq + t+ l + 1; a contradiction.

Lemma 3.4. If (G, k = tq+ t+ l+1, t) is a yes-instance of Almost Disjoint Cycle Packing
then there is a set S of k cycles such that every vertex appears in at most t of the cycles in S and,
for all C ∈ S, V (C) ∩ {x̂i | i ∈ [q]} ≤ 1.

Proof. Let S be a set of k cycles in G such that every vertex appears in at most t of the cycles
in S. By Lemmas 3.2 and 3.3, we can assume that Z ∪ U ∪R ⊆ S.

Suppose that there is a cycle C ∈ S such that C contains at least two vertices from {x̂i | i ∈ [q]}.
Let x̂i and x̂j be two such vertices. By Lemma 3.2, we know that, for each p ∈ [q], x̂p can belong to
at most one more cycle in S \ Z. Since C ∈ S, the number of cycles in S can be at most tq + t + l,
contradicting the fact that S is a solution of size tq + t+ l + 1.

Lemma 3.5. Let (Σq, ȳ) be an instance of Disjoint Factors and (G, k = tq + t + l + 1, t) be
the corresponding instance of Almost Disjoint Cycle Packing. Then, (Σq, ȳ) is a yes-instance of
Disjoint Factors if and only if (G, k, t) is a yes-instance of Almost Disjoint Cycle Packing.

Proof. In the forward direction let (si, ei) be a factor for xi, i ∈ [q]. We construct a solution S
for (G, k, t) as follows. We include all the cycles in Z ∪ U ∪ R to S. For i ∈ [q], we add the cycle
Ci = (x̂i, ŷsi , ŷsi+1, . . . , ŷei) to S. Note that si, ei ∈ [n], si < ei, and, for distinct i, j ∈ [q], the sets
{si, si+1, . . . , ei} and {sj , sj+1, . . . , ej} are disjoint sets. Therefore, for Ci and Cj , i 6= j and i, j ∈ [q],
we have V (Ci) ∩ V (Cj) = ∅. Observe that, for i ∈ [q], x̂i appears in t − 1 cycles in Z ∪ U ∪ R and
in the cycle Ci. Therefore, x̂i belongs to at most t cycles in S. Also, vertices in path Py belong to
t − 1 cycles in Z ∪ U ∪ R and at most one of the cycles in {Ci | i ∈ [y]}. Therefore, every vertex
appears in at most t of the cycles in S and |S| = |Z ∪ U ∪ R| + |Σq| = |Z| + |U| + |R| + |Σq| =
(t− 1)q + 2 + t− 1 + l + q = tq + t+ l + 1 = k, as needed.

In the reverse direction, consider a set of k cycles S in G such that every vertex appears in at
most t of the cycles. By Lemmas 3.2 and 3.3, we can assume that C = Z ∪U ∪R ⊆ S. Furthermore,
C ∈ S \ C cannot contain any vertex from V (Pw) ∪ {u, u′}, since these vertices already belong to
t cycles in U ∪ R. Also, C cannot contain any vertices from {zji , z̃ji | i ∈ [q], t ∈ [t − 1]}, as there
is a unique cycle containing them which is present in Z. Therefore, C contains vertices only from
{x̂i | i ∈ [q]}∪V (Py). Moreover, vertices in V (Py) belong to t− 1 cycles in R. Therefore, each vertex
in V (Py) can belong to at most one cycle C ∈ S \C. By Lemma 3.4, we know that, for each C ∈ S \C,
C contains at most one vertex from {x̂i, i ∈ [q]}. Also, all the cycles in S \ C must contain a vertex
from {x̂i, i ∈ [q]}. Therefore, cycle C contains a vertex from {x̂i, i ∈ [q]} and some vertices from
V (Py). Observe that C must contain consecutive vertices from Py. For a cycle C which contains x̂i,
for some i ∈ [q], and vertices ŷsi , ŷsi+1

, . . . , ŷei , we return a factor (si, ei), where si < ei. Note that
for i, j ∈ q and i 6= j, {si, si+1, . . . , ei} ∩ {sj , sj+1, . . . , ej} = ∅. Therefore, we have a factor for each
xi, i ∈ q. This concludes the proof.

We can now state the main theorem of this section.

Theorem 3.2. Let f : N→ R≥1 be a non-decreasing computable function such that f(k) ∈ O(kε),
where 0 < ε ≤ 1. Then, Almost Disjoint Cycle Packing admits no polynomial kernel restricted
to Lf unless NP ⊆ coNP/poly.
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Proof. We refute polynomial kernels for Almost Disjoint Cycle Packing restricted to Lf .

Since f(k) ∈ O(kε), we have that t = O(k1−ε) = O(kε
′
). We start with an instance (Σq, ȳ) of

Disjoint Factors and create an instance (G, k, t) of Almost Disjoint Cycle Packing by ap-
plying the reduction as described. Note that the parameter for Disjoint Factors is q. Moreover,

k = O(q
1
ε ) whenever t = q

ε′
1−ε′ , k = tq + t+ l+ 1, and l = log2(t− 1). Replacing q by t

1−ε′
ε′ for k, we

get t
1
ε′ < k < 2t

1
ε′ and hence t = O(kε

′
). By Lemma 3.5, this polynomial time reduction is a poly-

nomial parameter transformation from Disjoint Factors to Almost Disjoint Cycle Packing.
Therefore, assuming we have a polynomial kernel for Almost Disjoint Cycle Packing, where
t = O(kε

′
) and 0 < ε′ < 1, implies a polynomial compression for Disjoint Factors, contradicting

Theorem 2.2. So, Almost Disjoint Cycle Packing restricted to Lf has no polynomial kernel
unless NP ⊆ coNP/poly.

3.2. A kernel for Almost Disjoint Cycle Packing. Let f : N → R≥1 be a non-decreasing

computable function such that f(k) ∈ o(
√
k). In this section, we consider the Almost Disjoint

Cycle Packing problem restricted to Lf . The kernelization algorithm presented here is inspired
from the lossy kernel for the Cycle Packing problem (Section 5, [24]). To simplify notation, we let
c = f(k) and use c instead of f(k) throughout the section, which implies that t = dkc e. As we shall

see, the assumption c ∈ o(
√
k) is required to guarantee that our kernelization algorithm does in fact

run in time polynomial in the input size. We show that, as long as c ∈ o(
√
k), we can in polynomial

time reduce an instance to at most O(2dce
2

k7+dce log3 k) vertices. Our kernelization algorithm can be
more or less divided into three stages. We start by computing (using Theorem 2.1) a feedback vertex
set of size at most O(k log k) and denote this set by F (assuming no k vertex disjoint cycles were
found). We let T = G − F and let T≤1, T2, and T≥3, denote the sets of vertices in T having degree
at most one in T , degree exactly two in T , and degree greater than two in T , respectively. Moreover,
we let P denote the set of all maximal degree-two paths in G[T ]. Next, we bound the size of T≤1. We
know that T is a forest. By a property of forests, we know that |T≥3| ≤ |T≤1| and |P| ≤ |T≥3|+ |T≤1|.
So, an upper bound on |T≤1| provides an upper bound on |T≥3| and |P|. In the second stage, we show
that (roughly speaking) the graph can have at most dce − 1 vertices of high degree. Using this fact,
the last stage consists of bounding the size of T2. Note that bounding the sizes of T≤1, T2, T≥3, and
P implies a bound on the size of T . Combining this bound with the fact that F is of size at most
O(k log k), we get the claimed kernel.

Bounding the size of T≤1. First, we get rid of vertices of degree one and two in the graph G using
Reduction Rules A1 and A2. Observe that we can safely delete vertices of degree zero or one (in G)
as they do not participate in any cycle.

Reduction Rule A1. Delete vertices of degree zero or one in G.

Reduction Rule A2. If there is a vertex v of degree exactly two in G then delete v and connect
its two neighbors by a new edge.

Lemma 3.6. Reduction Rule A2 is safe.

Proof. Let u be a vertex of degree two in G and let NG(u) = {v, w}. Let G′ be the graph obtained
after contracting edge (u, v) onto vertex v.

Consider a set C = {C1, . . . , Ck} of cycles such that every vertex in V (G) participates in at most
t of them. There can be at most t cycles in C to which u belongs. Moreover, both v and w (and hence
the edge (u, v)) must be present in all those cycles. Now, after contracting the edge (u, v) onto v, we
can see that v is present in exactly those cycles where u was also present. Therefore, if (G, k, t) is a
yes-instance then so is (G′, k, t).

Let (G′, k, t) be a yes-instance such that C′ = {C ′1, . . . , C ′k} is a solution for (G′, k, t). Consider
those cycles in C′ containing the edge (v, w). There can be at most t such cycles. Now, when we
translate back to the graph G, the edge (v, w) corresponds to a path of length three. Therefore, v, u,
and w, all participate in at most t cycles, as needed.

Reduction Rule A3. If there exists an edge (u, v) ∈ E(G) of multiplicity more than 2t then
reduce its multiplicity to 2t ≤ 2k.

The safeness of Reduction Rule A3 follows from the fact that any pair of vertices can belong to
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at most t cycles. The fact that we can assume 2t ≤ 2k follows from the observation that when t = k
the problem becomes solvable in time polynomial in n and k. Once Reduction Rules A1, A2, and A3
are no longer applicable, the minimum degree of the graph G is three and the multiplicity of every
edge is at most 2t. Note that every vertex in T≤1 is either a leaf or an isolated vertex in T . Therefore,
every vertex of T≤1 has at least two neighbours in F . For (u, v) ∈ F × F , let L(u, v) be the set of
vertices of degree at most one in T = G − F such that each x ∈ L(u, v) is adjacent to both u and
v (if u = v, then L(u, u) is the set of vertices which have degree at most one in T = G − F and at
least two edges to u). For each pair (u, v) ∈ F × F , we mark |F |dkc e+ 2k + 1 vertices from L(u, v) if

L(u, v) > |F |dkc e+ 2k + 1 and mark all vertices in L(u, v) if L(u, v) ≤ |F |dkc e+ 2k + 1.

Reduction Rule A4. If |T≤1| ≥ |F |2(|F |dkc e+ 2k+ 1) + 1 then there exists an unmarked vertex
v ∈ T≤1.

• If dG−F (v) = 0 then delete v.
• If dG−F (v) = 1 contract the unique edge in G − F which is incident to v. We let e denote

this unique edge and we let w denote the other endpoint onto which we contract e.

Reduction Rule A4 is also available as Lemma 5.7 in [24].

Lemma 3.7. Reduction Rule A4 is safe.

Proof. Since we marked at most |F |dkc e+ 2k + 1 vertices for each pair (u, v) ∈ F × F , there can

be at most |F |2(|F |dkc e + 2k + 1) marked vertices in T≤1. Let v be an unmarked vertex. We only
consider the case where dG−F (v) = 1, as the other case can be proved analogously.

Let C be a maximum packing in G such that every vertex in V (G) appears in at most t = dkc e
cycles of C. Observe that if C does not contain any cycles intersecting {v} then contracting e will
keep all the cycles in C present in G′ = G/e. Consider those cycles in C containing vertex v. Such
cycles either contain both v and (its unique neighbor in T ) w or contain v and two of its neighbors in
F . Note that cycles containing both v and w are also present in G′ as w is connected to all neighbors
of v. Hence, we only need to show that cycles containing v and two of its neighbors in F can be
reconstructed in G′. Fix such a cycle C and let x and y be the neighbors of v in F (x and y are
not necessarily distinct). Since v ∈ L(x, y) and it is unmarked, there are |F |dkc e+ 2k + 1 vertices in
L(x, y) which are already marked by the marking procedure. Furthermore, since G can have at most
|F |dkc e cycles such that every vertex appears in at most dkc e of them, at least one of these marked
vertices, call it v′, is not present in any of the cycles in C; this is true since, for any cycle C ∈ C,
|V (C) ∩ F | ≥ V (C) ∩ T≤1, which implies that at most |F |dkc e marked vertices can belong to cycles

in C. Therefore we can route the cycle C through v′ instead of v. Since v can appear in at most dkc e
cycles and we have marked |F |dkc e+ 2k + 1 > |F |dkc e+ 2dkc e+ 1 vertices for each pair in F , we can
repeat the same procedure for each cycle in C containing v to obtain a packing C′ in G′ whose size is
at least |C|.

For the reverse direction, let C′ be a maximum packing in G′ such that every vertex in V (G′)
appears in at most t = dkc e cycles of C′. The only cycles in G′ which do not correspond to cycles in
G are those cycles containing an edge (w, z), where z ∈ NG′(w) but z 6∈ NG(w). However, we can
simply replace such edges by a path on three vertices in G, namely w, v, and z. It is not hard to see
that v appears in at most as many cycles as w. Hence, we can construct, from C′, a packing C in G
whose size is at least |C′|. This completes the proof.

Bounding the number of high-degree vertices. When none of the aforementioned reduction rules
are applicable, the size of T≤1, T≥3, and P, is at most |F |2(|F |dkc e+ 2k+ 1) = O(k4 log3 k). Consider
P, i.e. the collection of maximal degree-two paths in T2, and assume that there exists a set Fdce =
{x1, . . . , xdce} ⊆ F (of size dce) such that for every vertex x ∈ Fdce there exists a path P ∈ P such
that x has at least 4kdce neighbours in P . Our goal is to show that if Fdce exists then we have a
yes-instance. Before we do so, we need to prove the following lemma.

Lemma 3.8. If dce ∈ o(
√
k) and dce > dkc e then Almost Disjoint Cycle Packing can be

solved in time polynomial in n.

Proof. When dce > dkc e, k < dce2. Moreover, observe that if dce ∈ o(
√
k) then k is a constant.

Therefore, we can simply apply the algorithm of Lemma 3.1 which runs in time polynomial in n when
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k is a constant.

Reduction Rule A5. If there exists a set of dce vertices Fdce = {x1, . . . , xdce} ⊆ F such that for

all xi, 1 ≤ i ≤ dce, |NG(xi)∩ V (P)| > |F |2(|F |dkc e+ 2k+ 1)4kdce, then return a trivial yes-instance.

Lemma 3.9. Reduction Rule A5 is safe.

Proof. For each xi, we mark a path Pi ∈ P satisfying the condition |NG(xi) ∩ V (Pi)| ≥ 4kdce.
Since |P| ≤ |F |2(|F |dkc e + 2k + 1) and |NG(xi) ∩ V (P)| > |F |2(|F |dkc e + 2k + 1)4kdce such a path
must exist. Next, we construct a set of cycles Ci, for each xi, as follows. Given xi and Pi, we pick
(any) 2dkc e neighbors of xi to form dkc e cycles pairwise intersecting only in xi. Note that every vertex
in V (Pi) appears at most once in Ci. We claim that C = C1 ∪ . . . ∪ Cc is in fact the desired solution.
Clearly, |C| = dcedkc e ≥ k. Every vertex in Fdce appears in exactly dkc e cycles and every other vertex

appears in at most dce ≤ dkc e cycles (assuming dce ∈ o(
√
k) and applying Lemma 3.8 otherwise), as

needed.

After applying Reduction Rule A5, there can be at most dce − 1 vertices in F having more
than |F |2(|F |dkc e + 2k + 1)4kdce = O(k5 log3 k) neighbors in T2. We let Fdce−1 ⊆ F denote the
maximum sized such subset and we let F ? = F \ Fdce−1. For any vertex x ∈ F ?, |NG(x) ∩ V (P)| ≤
|F |2(|F |dkc e+ 2k+ 1)4kdce and, consequently, |NG(F ?)∩ V (P)| ≤ |F |2(|F |dkc e+ 2k+ 1)4kdce|F ?| ≤
|F |3(|F |dkc e+ 2k + 1)4kdce = O(k6 log3 k).

Bounding the size of T2. We start by marking all vertices in F , T≤1, T≥3, and NG(F ?) ∩ V (P).
The total number of marked vertices is therefore in O(k6 log3 k). Moreover, all the unmarked vertices
must be in T2 and form degree-two paths. As minimum degree of G is at least three, each unmarked
vertex must have at least one neighbor in Fdce−1 and cannot have neighbors in F ?. We call a set of
unmarked vertices a region if they form a maximal path in G[T2]. At this point, the total number
of regions is in O(k6 log3 k), as the number of marked vertices is in O(k6 log3 k). Therefore, our last
step is to bound the size of each region. To do so, we first recursively further subdivide each region
as follows. Fix a region R and check for each vertex xi ∈ Fdce−1, the value of |NG(xi) ∩ R|. If

|NG(xi) ∩ R| < 4kdce2dce, then we again mark the vertices in NG(xi) ∩ R, increasing the number
of regions by a multiplicative factor of at most 4kdce2dce. We repeat this process as long as there
exists a region R and a vertex xi ∈ Fdce−1 satisfying |NG(xi) ∩R| < 4kdce2dce. Since |Fdce−1| < dce,
repeating this procedure for every region and every vertex in Fdce−1 increases the number of regions

to at most O(2dce
2

k6+dce log3 k); each of the initial O(k6 log3 k) regions can be subdivided into at
most (4kdce2dce)dce subregions.

Lemma 3.10. Let H be a graph consisting of a path P and an independent set X = {x1, . . . , xdce}
of size dce ≥ 1. Let k ≥ dce2 be an integer. If ∀x ∈ X we have |NH(x)| ≥ 4kdce2dce and ∀p ∈ V (P )
we have |NH(p) ∩X| > 0, then we can construct a set of distinct cycles C = C1 ∪ . . . ∪ Cdce such that

(a) |Ci| = dkc e, (b) all cycles in Ci pairwise intersect in xi, and (c) every vertex in P appears in at
most one cycle in C.

Proof. We prove the lemma by induction on the number of vertices in X. Let P = {p1, . . . , p|P |}.
For the base case, we have dce = 1 and X = {x1}. Since every vertex on the path is connected to x1
and x1 has at least 8k neighbors, we know that |V (P )| ≥ 8k. Therefore, taking the first 2k vertices
on the path we can easily construct k cycles pairwise intersecting only at {x}.

Suppose the statement holds for all dce, where 1 < dce ≤ dqe−1, and consider the case dce = dqe.
We claim that there exists a vertex x in X such that we can pack dkq e cycles pairwise intersecting only

at {x} using only the first 4k(dqe−1)+1 vertices on the path, i.e. {p1, . . . , p4k(dqe−1)+1}. In fact, it is
enough to show that at least one vertex x ∈ X has at least 2k neighbours in {p1, . . . , p4k(dqe−1)+1}. If
no such vertex exists then |NH(X)∩{p1, . . . , p4k(dqe−1)}| < 2kdqe. But since |{p1, . . . , p4k(dqe−1)+1}| =
4k(dqe−1)+1 > 2kdqe (for dqe ≥ 2) this contradicts the fact that every vertex in {p1, . . . , p4k(dqe−1)+1}
must have at least one neighbor in X. Now delete vertex x from X and vertices {p1, . . . , p4k(dqe−1)+1}
from P . Moreover, if after deleting x some vertices in P ′ = P \ {p1, . . . , p4k(dqe−1)+1} no longer
have neighbors in X ′ = X \ {x} simply delete those vertices and add an edge connecting their two
unique neighbors in P . Call this new graph H ′. Observe that for all x ∈ X ′, we have |NH′(x)| >
4kdqe2dqe − 4k(dqe − 1)− 1 = 4kdqe(2dqe − 1) + 4k − 1 ≥ 4k(dqe − 1)2dqe−1, when dqe ≥ 2. Applying
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the induction hypothesis to X ′ and P ′, we know that we can pack d k
q−1e ≥ dkq e cycles for each vertex

x ∈ X ′, as needed.

Using Lemma 3.10, we can get an upper bound on the size of a region R by applying the following
reduction rule. Recall that by construction (and after subdividing regions), vertices of a region have
neighbours only in Fdce−1, where Fdce−1 is a set of at most dce−1 vertices. In fact, for each region R,
there exists a set FR ⊆ Fdce−1 such that each vertex in R has at least one neighbor in FR and each

vertex in FR has at least 4kdce2dce neighbors in R.

Reduction Rule A6. Let R be a region such that |R| > 4kdce4dce. Let Q = {Q1, Q2, . . .} be a
family of sets which partitions R such that for any two vertices u, v ∈ R, we have u, v ∈ Qi if and
only if NG(u) ∩ FR = NG(v) ∩ FR. In other words, two vertices belong to the same set in Q if and
only if they share the same neighborhood in FR. Since |R| > 4kdce4dce and |Q| ≤ 2dce, there exists a
set Q ∈ Q such that |Q| > 4kdce2dce. Let v be a vertex in Q and let w be a neighbor of v in R (v can
have at most two neighbors in R). Contract the edge (v, w) onto w. Note that since |Q| > 4kdce2dce,
each vertex in FR has at least 4kdce2dce neighbors in R even after the contraction.

Lemma 3.11. Reduction Rule A6 is safe.

Proof. Let C be a maximum packing in G and C′ be a maximum packing in G′ such that every
vertex in V (G) and V (G′) appears in at most t = k

c cycles of C and C′, respectively.
Since G′ = G/e is a minor of G, we have |C| ≥ |C|′. We now show that |C′| ≥ |C|. Let CR denote

the cycles in C which intersect with both R and FR. Observe that all cycles in C \ CR are still present
in G′ (possibly of shorter length). Moreover, in C\CR, all the vertices of R appear in the same number
of cycles, as any such cycle must cross all of the region. Consider the at most |FR|dkc e cycles in CR.
By applying Lemma 3.10, we can find at least as many cycles in G′[R ∪ FR]. Every vertex in FR
appears in at most dkc e of them and every vertex in R appears in at most one of them. Therefore no

vertex is ever used more than dkc e times, as needed.

Since the number of regions is in O(2dce
2

k6+dce log3 k) and the size of a region is at most 4kc4c,
the theorem follows.

Theorem 3.3. Let f : N → R≥1 be a non-decreasing computable function such that f(k) ∈
o(
√
k). For c = f(k), Almost Disjoint Cycle Packing admits a kernel consisting of at most

O(2c
2

k7+c log3 k) vertices over Lf .

Theorem 3.3 implies that when c ∈ o(
√
k) the Almost Disjoint Cycle Packing problem

admits a subexponential kernel. When c ∈ o(log` k), ` ∈ N, the problem admits a quasi-polynomial
kernel. Finally, when c ∈ O(1) the problem admits a polynomial kernel.

4. Pairwise Disjoint Cycle Packing. Recall that in the Pairwise Disjoint Cycle Packing
problem, given a graph G and integers k and t, the goal is to find at least k cycles such that every
pair of cycles intersects in at most t vertices.

4.1. NP-completeness for t = 1. To show NP-completeness of Pairwise Disjoint Cycle
Packing, for t = 1, we give a reduction from a variant of SAT called 2/2/4-SAT defined as follows:
Each clause contains four literals, each variable appears four times in the formula, twice negated and
twice not negated, and the question is whether there is a truth assignment of the variables such that in
each clause there are exactly two true literals. This variant was shown to be NP-complete by Ratner
and Warrnuth [27]. We let φ denote the formula, U = {u1, . . . , u|U |} denote the set of variables, and
W = {w1, . . . , w|W |} denote the set of clauses.

Variable gadget. For each variable u ∈ U , we construct a graphGu, which we call a necklace graph,
as follows. Gu consists of 32 vertices. The first set of 16 vertices form a cycle Cinu = {v11 , . . . , v116} and
the second set of 16 vertices form cycle Coutu = {v21 , . . . , v216}. We add an edge v1i v

2
i for 1 ≤ i ≤ 16.

Informally, Gu consists of 16 4-cycles where every two consecutive cycles share an edge (see Figure 3).
Cycle Cinu is the inner cycle, Coutu is the outer cycle, and we number all 4-cycles from 1 to 16 in a
clockwise order, i.e. we denote the cycles by {C1

u, . . . , C
16
u }. It is not hard to see that the maximum

size of a packing of distinct cycles, pairwise intersecting in at most one vertex, is 8. Such a packing
consists of picking either odd-numbered or even-numbered cycles. We adopt the convention that
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Fig. 3. Variable gadgets

picking odd-numbered cycles corresponds to setting the variable to true and picking even-numbered
cycles corresponds to setting the variable to false. Since each variable appears in exactly four clauses,
we mark two consecutive 4-cycles for each clause as follows. Assume variable u appears in w1, w2,
w3, and w4. Then cycles numbered 1 and 2 are reserved for the clause gadget of w1, cycles numbered
5 and 6 are reserved for the clause gadget of w2, cycles numbered 9 and 10 are reserved for the clause
gadget of w3, and finally cycles numbered 13 and 14 are reserved for the clause gadget of w4. Note
that every pair of marked cycles will be separated by at least two consecutive 4-cycles. For a cycle
Ciu, 1 ≤ i ≤ 16, we let eiu denote the edge of Ciu which lies on the outer cycle Coutu . These outer edges
will be used to connect variable gadgets to clause gadgets.

Clause gadget. Let w ∈W be a clause in φ and let u1, u2, u3, and u4 be the variables appearing
in w. We construct the clause gadget for w as follows (Figure 4). First, we add two pairs of vertices,
a red pair and a blue pair, denoted by Pw = {{r1w, r2w}, {b1w, b2w}}. Let Gui be the graph constructed
as variable gadget for variable ui, i ∈ {1, 2, 3, 4}, and assume, without loss of generality, that cycles
C1
ui and C2

ui in Gui are marked for clause w. If ui appears positively in w, we add an edge from r1w
to one endpoint of the outer edge e1ui and another edge from r2w to the other endpoint of e1ui . We say
{r1w, r2w} is linked to e1ui . If ui appears negatively in w, we add an edge from r1w to one endpoint of the
outer edge e2ui and another edge from r2w to the other endpoint of e2ui . We do the reverse construction
for {b1w, b2w}. That is, if ui appears positively in w we add an edge from b1w to one endpoint of the
outer edge e2ui and another edge from b2w to the other endpoint of e2ui . If ui appears negatively in
w we add an edge from b1w to one endpoint of the outer edge e1ui and another edge from b2w to the
other endpoint of e1ui . The process is repeated for every variable appearing in the clause. Since each
clause consists of four variables, every vertex in a clause gadget will have exactly four neighbors in
(different) variable gadgets.

The construction. Given an instance φ of 2/2/4-SAT, we first construct all variable gadgets

followed by all clause gadgets. To complete the construction, we add
(
4|W |
2

)
− 2|W | cycles of length

four, which we call auxiliary cycles, as follows. Recall that for each clause w ∈ W we create two
pairs of vertices Pw = {{r1w, r2w}, {b1w, b2w}}. We add internally vertex disjoint 4-cycles between riw
and bjw, i, j ∈ {1, 2} (Figure 4), i.e., 4-cycles whose only common vertices are riw and bjw. Finally, for
every two clauses w,w′ ∈ W we add internally vertex disjoint 4-cycles between riw and rjw′ , b

i
w and

bjw′ , and riw and bjw′ , i, j ∈ {1, 2}. Since every pair of vertices in clause gadgets are connected by a
cycle except for 2|W | pairs, namely {r1w, r2w} and {b1w, b2w} for each w ∈W , the total number of added

cycles follows. We let G be the resulting graph and (G, k = 8|U |+
(
4|W |
2

)
, t = 1) denotes the resulting

Pairwise Disjoint Cycle Packing instance.

Lemma 4.1. Let G be a graph constructed from a given 2/2/4-SAT formula as described above.
Then, any packing of distinct cycles pairwise intersecting in at most one vertex has size at most
8|U |+

(
4|W |
2

)
.

Proof. Consider any cycle C which is not fully contained inside a variable gadget (i.e. a necklace
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Fig. 4. Clause gadget and its corresponding auxiliary cycles

graph). We claim that such a cycle must contain at least two vertices from clause gadgets (not
necessarily the same clause gadget). To see why, it is enough to note that C must contain at least
one such vertex, say v (recall that all vertices in auxiliary cycles are either in clause gadgets or have
degree exactly two). However, v has exactly one neighbor in any variable gadget and all neighbors
of v not in clause gadgets have degree exactly two (and connect two different vertices from clause
gadgets).

Since any cycle not fully contained inside a variable gadget must use at least two vertices from
clause gadgets and no two cycles can share more than a single vertex, we know that the total number
of such cycles is at most

(
4|W |
2

)
. To conclude the proof, note that any variable gadget can contribute

at most 8 cycles that pairwise intersect in at most one vertex (in this case the cycles are in fact vertex
disjoint).

Lemma 4.2. If φ is a yes-instance of 2/2/4-SAT then (G, k = 8|U | +
(
4|W |
2

)
, t = 1) is a yes-

instance of Pairwise Disjoint Cycle Packing.

Proof. Consider a satisfying assignment of the variables such that in each clause there are exactly
two true literals. If a variable is set to false we pack all even-numbered cycles in its corresponding
gadget. Similarly, if a variable is set to true we pack all odd-numbered cycles. The total number of
such cycles is 8|U | and all cycles are vertex disjoint. Next, we pack all

(
4|W |
2

)
− 2|W | auxiliary cycles.

These cycles pairwise intersect in at most one vertex by construction. Hence, we still need to pack
exactly 2|W | cycles. Let w ∈ W be a clause in φ, Pw = {{r1w, r2w}, {b1w, b2w}}, and let u1, u2, u3, and
u4 be the variables appearing in w. Note that the vertices in {r1w, r2w} do not share an auxiliary cycle
nor do the vertices in {b1w, b2w}. We show that for each clause we can pack two cycles using each of
its pairs exactly once.

Let Gui be the variable gadget constructed for variable ui, i ∈ {1, 2, 3, 4}, and assume, without
loss of generality, that cycles C1

ui and C2
ui in Gui are marked for clause w. Out of the eight edges,

{e1u1
, e2u1

, . . . , e1u4
, e2u4
}, we know that exactly four belong to some cycle that was already packed (based

on the truth value of each variable). Hence, we need to show that, out of the remaining four free
edges, {r1w, r2w} is linked to two of them and {b1w, b2w} is linked to the other two. If so, then we can
pack two additional cycles without violating the pairwise disjointness constraint. By construction,
we known that (a) if ui appears positively in w then {r1w, r2w} is linked to e1ui and {b1w, b2w} is linked
to e2ui and (b) if ui appears negatively in w then {r1w, r2w} is linked to e2ui and {b1w, b2w} is linked to
e1ui . However, we know that in each clause there are exactly two true literals (and hence two false
literals). If both false literals are negated variables, say u1 and u2, then both variables must be true
and therefore {r1w, r2w} is linked to both e2u1

and e2u2
(which are free). If both false literals are positive

variables, say u1 and u2, then both variables must be false and therefore {r1w, r2w} is linked to both
e1u1

and e1u2
(which are free). If u1 is negative and u2 is positive (in w) then both u1 must be true and



CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 15

u2 must be false and therefore {r1w, r2w} is linked to both e2u1
and e1u2

(which are free). Using similar
arguments for positive literals we can show that {b1w, b2w} must be linked to the remaining two free
edges, which completes the proof.

Lemma 4.3. If (G, k = 8|U | +
(
4|W |
2

)
, t = 1) is a yes-instance of Pairwise Disjoint Cycle

Packing then φ is a yes-instance of 2/2/4-SAT.

Proof. Let C be a packing of distinct cycles of size 8|U | +
(
4|W |
2

)
such that all cycles pairwise

intersect in at most one vertex. By Lemma 4.1, we know that such a packing is maximum. Moreover,
any cycle not fully contained in a variable gadget must use at least two vertices from clause gadgets
and the maximum number of such cycles is

(
4|W |
2

)
. Therefore, we can safely assume that C contains all(

4|W |
2

)
− 2|W | auxiliary cycles; if an auxiliary cycle is not in C then the corresponding pair of vertices

from clause gadgets must belong to some other cycle in C (since C is maximum). Therefore we can
replace that cycle with the auxiliary cycle. Clearly, each variable gadget can contribute at most eight
cycles. Assume some gadget contributes less. Then, the maximum size of C would be 8|U |+

(
4|W |
2

)
−1,

a contradiction. It follows that for each clause w, each pair in Pw = {{r1w, r2w}, {b1w, b2w}} must use
exactly two external edges belonging to variable gadgets to form a cycle and these four edges must
all belong to different variable gadgets; it is easy to check that using more than one external edge or
any non-external edge from a variable gadget would reduce the number of cycles that can be packed
within the gadget by at least one.

Assume that for some clause w the assignment implied by the packing does not result in exactly
two true literals and two false literals. Then, we claim that one of the pairs in Pw cannot form a
cycle. Consider the case where three literals are false (the other cases can be handled similarly). If
all three false literals are negated variables, say u1, u2, and u3, then all three variables must be true
and therefore {r1w, r2w} is linked to e2u1

, e2u2
, and e2u3

, which are free, but {b1w, b2w} is linked to e1u1
, e1u2

,
and e1u3

, which are not free.

The next theorem follows from combining the previous two lemmas with the fact that 2/2/4-SAT
is NP-hard.

Theorem 4.1. Pairwise Disjoint Cycle Packing is NP-complete for t = 1.

4.2. A polynomial kernel for t = 1. There are many similarities but also some subtle differ-
ences when dealing with the cases t = 1 and t ≥ 2. For instance, for any value of t ≥ 1, finding a
flower of order k in the graph is sufficient to solve the problem. On the other hand, we can not apply
Reduction Rule A2 (which is the same as Reduction Rule B2) for all vertices of degree two when
t ≥ 2. More importantly, finding two vertices in G with more than 2k common neighbors is enough
to solve the problem for t ≥ 2 but not for t = 1. As we shall see, this seemingly small difference
requires major changes when dealing with the case t = 1. We start with some classical results and
reduction rules which will be used throughout. Whenever some reduction rule applies, we apply the
lowest-numbered applicable rule. For clarity, we will always denote a reduced instance by (G, k, t)
(the one where reduction rules do not apply).

The first step in our kernelization algorithm is to run the algorithm of Theorem 2.1 and either
output a trivial yes-instance (if k vertex disjoint cycles are found) or mark the vertices of the feedback
vertex set and denote this set by F . We proceed with the following simple reduction rules to handle
low-degree vertices and self-loops in the graph.

Reduction Rule B1. Delete vertices of degree zero or one in G.

Reduction Rule B2. If there is a vertex v of degree exactly two in G then delete v and connect
its two neighbors by a new edge.

Reduction Rule B3. If there exists a vertex v ∈ V (G) with a self-loop then delete the loop (not
the vertex) and decrease the parameter k by one.

Reduction Rule B4. If there is a pair of vertices u and v in V (G) such that there are more
than two parallel edges between them then reduce the multiplicity of the edge to two.

Lemma 4.4. Reduction Rule B2 is safe.
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Proof. Let (G, k, t) denote the original instance and let (G′, k, t) denote the instance obtained
after applying Reduction Rule B2, i.e. after deleting vertex v and adding an edge between its two
neighbors u and w.

Assume (G′, k, t) is a yes-instance and let C′ = {C ′1, . . . , C ′k} denote the set of k distinct cycles
satisfying |V (C ′i) ∩ V (C ′j)| ≤ 1, for all 1 ≤ i, j ≤ k and i 6= j. Consider a cycle C ′ ∈ C′. If only one
of u or w is in C ′ then C ′ is also a cycle in G. If both u and w are in C ′ then every other cycle in C′
contains at most one of the two. Hence, if such a cycle exists we can obtain a corresponding cycle in
G by simply replacing the edge (u,w) by the path formed by u, v, and w.

For the other direction, let (G, k, t) be a yes-instance and let C = {C1, . . . , Ck} denote the cor-
responding solution. Assume, without loss of generality, that there exists a cycle C ∈ C such that
v ∈ V (C); otherwise C is also a solution for G′. Since v has degree two in G, both u and w must
also belong to C. Let C ′ denote the cycle in G′ obtained by deleting v and connecting u and w by
an edge. We claim that C′ = (C \ {C}) ∪ C ′ is a solution in G′. To see why, it is enough to note
there can be at most one cycle in C containing v; otherwise at least one pair of cycles in C violates
the disjointness constraint |V (Ci) ∩ V (Cj)| ≤ 1, 1 ≤ i, j ≤ k and i 6= j.

Lemma 4.5. Reduction Rule B3 is safe.

Proof. Let (G, k, t) denote the original instance and let (G′, k−1, t) denote the instance obtained
after applying Reduction Rule B3, i.e. after deleting the loop at vertex v.

Assume (G′, k−1, t) is a yes-instance and let C′ = {C ′1, . . . , C ′k−1} denote the set of k−1 distinct
cycles satisfying |V (C ′i) ∩ V (C ′j)| ≤ 1, for all 1 ≤ i, j ≤ k − 1 and i 6= j. Any cycle in C′ can intersect
with {v} in at most one vertex. Therefore, adding the cycle corresponding to the loop at v we obtain
a solution of size k for G.

For the other direction, let (G, k, t) be a yes-instance and let C = {C1, . . . , Ck} denote the cor-
responding solution. Even though v could have multiple self-loops, each such loop corresponds to at
most one cycle in C. Therefore, (G′, k − 1, t) is also a yes-instance.

Lemma 4.6. Reduction Rule B4 is safe.

Proof. Assume u and v are connected by more than two parallel edges in G. Since t = 1, u and
v can appear together in at most one cycle. Either this cycle includes other vertices, in which case
at most one (u, v) edge is used, or the cycle consists of only u and v, in which case exactly two (u, v)
edges are required. Therefore, reducing the multiplicity of any edge to two is safe.

Once none of the above reduction rules are applicable, our next goal is to bound the maximum
degree in the graph. To do so, we make use of the following.

Lemma 4.7 (see [8]). Given a (multi) graph G, an integer k, and a vertex v ∈ V (G), there
is a polynomial-time algorithm that either finds a v-flower of order k or finds a set Zv such that
Zv ⊆ V (G) \ {v} intersects all cycles passing through v, |Zv| ≤ 2k, and there are at most 2k edges
incident to v and with second endpoint in Zv.

A q-star, q ≥ 1, is a graph with q + 1 vertices, one vertex of degree q and all other vertices of degree
1. Let G be a bipartite graph with vertex bipartition (A,B). A set of edges M ⊆ E(G) is called a
q-expansion of A into B if

• Every vertex of A is incident with exactly q edges of M
• M saturates exactly q|A| vertices in B, i.e. there is a set of q|A| vertices in B that are incident

to edges in M .

Lemma 4.8 (see [8, 30]). Let q be a positive integer and G be a bipartite graph with vertex
bipartition (A,B) such that |B| ≥ q|A| and there are no isolated vertices in B. Then, there exist
nonempty vertex sets X ⊆ A and Y ⊆ B such that:

• X has a q-expansion into Y and
• no vertex in Y has a neighbour outside X, i.e. N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size of G.

For every vertex v ∈ V (G) of high degree (which will be specified later), we apply the algorithm of
Lemma 4.7. If the algorithm finds a v-flower of order k, the following reduction rule allows us to deal
with it.
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Fig. 5. A vertex v ∈ V (G), its corresponding set Zv, and the set D = {D1, D2, . . . , Dq}

Reduction Rule B5. If G has a vertex v such that there is a v-flower of order at least k then
return a trivial yes-instance.

Hence, in what follows we assume that no such flower was found but instead we have a set Zv of
size at most 2k such that Zv ⊆ V (G) intersects all cycles passing through v. Consider the connected
components of the graph G[V (G) \ (Zv ∪ {v})]. At most k − 1 of those components can contain a
cycle, as otherwise we again have a trivial yes-instance consisting of k vertex disjoint cycles.

Reduction Rule B6. If there are k or more components in G \ ({v} ∪ Zv) containing a cycle
then return a trivial yes-instance.

Moreover, for every component D of G[V (G) \ (Zv ∪ {v})], we have |NG(v) ∩ V (D)| ≤ 1. In other
words, v has at most one neighbor in any component and out of those components at most k− 1 are
not trees (see Figure 5). Let D = {D1, D2, . . . , Dq} denote those trees in which v has a neighbor.
Since the minimum degree of the graph is three, every leaf of a tree in D must have at least one
neighbor in Zv.

Lemma 4.9. Let C = {C1, . . . , Ck} be a solution in G and let C be a cycle in C such that
V (C) ∩ (Zv ∪ {v}) 6= ∅. Then, C can intersect with at most 2k + 1 components in D and therefore
the solution C can intersect with at most 2k2 + k components in D.

Proof. Consider any cycle C ∈ C that intersects Zv ∪ {v}. We contract all edges of C that are
not incident to any vertex in Zv ∪{v} and denote this new cycle by C ′. Between any two consecutive
vertices in C ′ ∩ (Zv ∪ {v}), there is either an edge from E(G) or a path passing through a vertex
z /∈ Zv ∪ {v}, where z corresponds to a contracted path from some component in G \ (Zv ∪ {v}).
Since |Zv ∪ {v}| ≤ 2k + 1, there can be at most 2k + 1 such vertices. Therefore, any cycle C ∈ C can
intersect with at most 2k+ 1 components from G \ (Zv ∪ {v}). Summing up for the k cycles in C, we
get the desired bound.

We now construct a bipartite graph H with bipartition (A = Zv, B = D). We slightly abuse
notation and assume that every component in D corresponds to a vertex in B and every vertex in
Zv corresponds to a vertex in A. For every Di ∈ D and for every z ∈ Zv, (Di, z) ∈ E(H) if and
only if there exists u ∈ V (Di) such that (u, z) ∈ E(G). After exhaustive application of Reduction
Rule B4, every pair of vertices in G can have at most two edges between them. In particular, there
can be at most two edges between any z ∈ Zv and v. Therefore, if the degree of v in G is more than
(2k2 + k + 2)2k + 3k − 1 then the number of components |D| is at least (2k2 + k + 2)2k (taking into
account the at most k − 1 neighbors of v in components containing a cycle as well as the at most 2k
edges incident to v and some vertex in Zv). Consequently, |D| ≥ (2k2 +k+ 2)|Zv|. We are now ready
to state our main reduction rule.

Reduction Rule B7. If there exists a vertex v ∈ V (G) such that dG(v) > (2k2+k+2)2k+3k−1
then apply Lemma 4.8 with q = 2k2 + k + 2 in the bipartite graph H.

• Let D′ ⊆ D and Z ′v ⊆ Zv be the sets obtained after applying Lemma 4.8 with q = 2k2 + k+ 2,
A = Zv, and B = D, such that Z ′v has a (2k2 + k + 2)-expansion into D′ in H.
• Delete all the edges of the form (u, v) ∈ E(G) such that u ∈ Di and Di ∈ D′.
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• Add two parallel edges between v and every vertex in Z ′v.

Lemma 4.10. Reduction Rule B7 is safe.

Proof. Let (G′, k, t) be the instance obtained after applying Reduction Rule B7, let (G, k, t) be
the original instance, and let C = {C1, . . . , Ck} be the cycles in G satisfying the pairwise intersection
constraint. We let Cv ⊆ C be the set of cycles containing the high degree vertex v. Note that any such
cycle must also contain at least one vertex from Zv. From Lemma 4.8 and Reduction Rule B7, we
know that NG(D′) ⊆ Z ′v. Hence, any cycle C ∈ Cv which contains a vertex from D′ must also contain
a vertex from Z ′v. In other words, whenever a cycle passes through D′ it must also pass through
Z ′v. We let C′v ⊆ Cv denote all these cycles. Note that any cycle in C \ C′v is not modified in G′ and
hence such cycles can still be packed in G′. Moreover, for any two cycles C1 and C2 in C′v, we have
(V (C1) ∩ Z ′v) ∩ (V (C2) ∩ Z ′v) = ∅, as both C1 and C2 contain v. Now, let V (C) ∩ Z ′v denote the set
of vertices in cycle C ∈ C′v. We can pick any vertex z ∈ V (C) ∩ Z ′v and replace the cycle C with
the cycle consisting of only z and v (as we added two edges between them). Consequently, for any
packing C of size k in G we can find a corresponding packing C′ of size k in G′, as needed.

Assume (G′, k, t) is a yes-instance and let C′ = {C ′1, . . . , C ′k} be a collection of k cycles pairwise
intersecting in at most one vertex. Consider those cycles in C′ which contain an edge (v, z) /∈ E(G)
(z ∈ Z ′v). Such cycles can be of two types. Either they contain a single edge (v, z) /∈ E(G) or they
contain two edges (v, z) /∈ E(G) and (v, z′) /∈ E(G), with z′ possibly equal to z. Therefore, for every
vertex z ∈ Z ′v, we need to have two components whose intersection with C is empty. However, we
know that, for every z ∈ Z ′v, z is connected to at least q = 2k2 + k+ 2 distinct components in D′. By
Lemma 4.9, C intersects at most 2k2 + k components in D′. In other words, for every vertex z ∈ Z ′v
there are at least two components in D′, say D1 and D2, such that V (D1)∩V (C) = V (D2)∩V (C) = ∅.
Consequently, we can find a solution in G by replacing any edge of the form (v, z) /∈ E(G) by a path
that starts from z, goes through D1 (or D2), and finally reaches v.

We now have all the required ingredients to bound the size of our kernel. From Theorem 2.1,
we know that the graph has a feedback vertex set F of size at most O(k log k). The degree of any
vertex in the graph is at least three (Reduction Rule B2) and at most in O(k3) (Reduction Rule B7).
Theorem 4.2 follows from combining these facts with Lemma 4.11.

Lemma 4.11 (see [8]). Let G = (V,E) be an undirected (multi) graph having minimum degree
at least three, maximum degree at most d, and a feedback vertex set of size at most r. Then, |V (G)| <
(d+ 1)r and |E(G)| < 2dr.

Theorem 4.2. For t = 1, Pairwise Disjoint Cycle Packing admits a kernel with O(k4 log k)
vertices and O(k4 log k) edges.

4.3. A polynomial compression for t ≥ 2 (independent of t). When t ≥ 2, finding two
vertices in G with 2k internally vertex-disjoint paths connecting them is enough to pack k cycles
pairwise intersecting in at most 2 vertices. Hence, bounding the maximum degree is relatively easy.
We first mark the feedback vertex set F and exhaustively apply Reduction Rule B1 and the following
modified variant of Reduction Rule B2.

Reduction Rule B8. If there exists a set of vertices P = {v1, . . . , vt+2} ⊆ V (G) such that G[P ]
is a path and dG(vi) = 2, 2 ≤ i ≤ t+ 1, then contract the edge v1v2.

As before, for every vertex v ∈ V (G), we apply the algorithm of Lemma 4.7. If the algorithm finds
a v-flower of order k, we apply Reduction Rule B5. Otherwise, consider the connected components
of the graph G[V (G) \ (Zv ∪ {v})]. We ignore the at most k − 1 components that can contain a
cycle and focus on the set D = {D1, D2, . . . , Dq} of trees in which v has a neighbor (recall that
|NG(v) ∩ V (D)| ≤ 1 for all D ∈ D and each component D must have a neighbor in Zv).

Reduction Rule B9. If |D| > 4k − 2 (or equivalently if dG(v) > 7k − 3) return a trivial yes-
instance.

Lemma 4.12. Reduction Rule B9 is safe.

Proof. Let v be a vertex in V (G), Zv be the set given by Lemma 4.7, and D = {D1, D2, . . . , Dq}
be the set of trees in which v has a neighbor. Observe that each D ∈ D contains at least one vertex
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which is adjacent to some vertex in Zv. Let Zv = {z1, z2, . . . , zl}, where l ≤ 2k. For i = 1 to l (in
increasing order), we let Di = {D | D ∈ D ∧ zi ∈ NG(D) ∩ Zv ∧ ∀i′<iD 6∈ Di′}. In other words, Di
contains a component D ∈ D whenever D contains a vertex which is adjacent to zi and D does not
belong to Di′ , for all i′ < i.

Once we have constructed the set Di, for all i ∈ [l], we arbitrarily pair the components in Di (all
pairs being disjoint); there can be at most one component in Di which is left unpaired. If we can
find k pairs in ∪i∈[l]Di, then for each pair (D1, D2) ∈ Di we can pack a cycle formed by vertices in
V (D1)∪ V (D2)∪ {v, zi}. Every pair of such cycles intersects in at most two vertices, namely {v, zi},
and we have a total of at least k cycles, as needed. Otherwise, |D| ≤ 2(k − 1) + l ≤ 4k − 2. Since v
can have at most k − 1 additional neighbors in G[V (G) \ (Zv ∪ {v})] and there are at most 2k edges
incident to v with second endpoint in Zv, the bound on dG(v) follows.

Having bounded the maximum degree of any vertex by O(k), we immediately obtain a bound
of O(k2 log k) on |T≤1|, |T≥3|, and the number of maximal degree-two paths in T2. Recall that T≤1,
T2, and T≥3, are the sets of vertices in T = G[V (G) \ F ] having degree at most one in T , degree
exactly two in T , and degree greater than two in T , respectively. To bound the size of T2, note that
if we mark all vertices in F ∪ NG(F ) we would have marked a total of O(k2 log k) vertices and the
only unmarked vertices form (not necessarily maximal) degree-two paths in T2 (and G), which we call
segments. However, we know from Reduction Rule B8 that the size of any segment is at most t+ 1.
Moreover, the total number of such segments is at most O(k2 log k). Putting it all together, we now
have a kernel with O(tk2 log k) vertices.

Lemma 4.13. For any t ≥ 2, Pairwise Disjoint Cycle Packing admits a kernel with
O(tk2 log k) vertices.

More work is needed to get rid of the dependence on t. The first step is to show that we can solve
Pairwise Disjoint Cycle Packing in cp(k)nO(1) time, where c is a fixed constant and p(.) is a
polynomial function in k. In the second step, we introduce a “succinct” version of Pairwise Disjoint
Cycle Packing, namely Succinct Pairwise Disjoint Cycle Packing, and show that we can
reduce Pairwise Disjoint Cycle Packing to an instance of Succinct Pairwise Disjoint Cycle
Packing where all the information can be encoded using a number of bits polynomially bounded in
k alone. As is usually the case, we assume that the weight of a set of vertices/edges is equal to the
sum of the weights of the individual vertices/edges.

Succinct Pairwise Disjoint Cycle Packing Parameter: k
Input: An undirected (multi) graph G, integers k and t, a weight function α : V (G)→ N, and
a weight function β : E(G)→ N.
Question: Does G have at least k distinct cycles C1, . . . , Ck such that α(V (Ci) ∩ V (Cj)) ≤ t
and β(E(Ci) ∩ E(Cj)) ≤ t for all i 6= j?

Lemma 4.14. For any t ≥ 2, Pairwise Disjoint Cycle Packing can be solved in 2k
3 log knO(1)

time.

Proof. We first obtain the kernel guaranteed by Lemma 4.13. Note that both the number of
vertices having degree three or more and the number of segments in the reduced instance is bounded by
O(k2 log k). We assume, without loss of generality, that any cycle in the solution must contain at least
one degree-three vertex (if some components of G consist of degree-two cycles we can greedily pack
those cycles). Hence, we can guess, for each cycle, which of those O(k2 log k) vertices and segments

will be included in O(2k
2 log k) time. Repeating this process for each of the k cycles and checking that

they satisfy the pairwise intersection constraint can therefore be accomplished in O(2k
3 log k) time.

Theorem 4.3. For any t ≥ 2, we can compress an instance of Pairwise Disjoint Cycle
Packing to an equivalent instance of Succinct Pairwise Disjoint Cycle Packing using at
most O(k5 log2 k) bits. In other words, Pairwise Disjoint Cycle Packing admits a polynomial
compression.

Proof. Given an instance of Pairwise Disjoint Cycle Packing we apply the kernelization
algorithm to obtain an equivalent instance on at most O(tk2 log k) vertices. Then, we create an
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equivalent instance of Succinct Pairwise Disjoint Cycle Packing, where each vertex is assigned
weight 1 and each edge is assigned weight 0. Note that in this new instance we still have a total
number of at most O(k2 log k) segments each of size at most t+ 1. We replace each such segment by
an edge whose weight is equal to the number of vertices on the segment, which requires log t ≤ log n
bits at most. However, if log n > k3 log k, by Lemma 4.14, we can solve the corresponding Pairwise
Disjoint Cycle Packing instance in time polynomial in n (and obtain a polynomial kernel). Hence,
the number of bits required to encode the weight of each such edge is at most k3 log k. Multiplying
by the total number of segments we obtain the claimed bound.

5. Conclusion. To summarize, we have showed that when relaxing the Disjoint Cycle Pack-
ing problem by allowing pairwise overlapping cycles (i.e. Pairwise Disjoint Cycle Packing) then
polynomial kernels are relatively easy to obtain, even when cycles can share at most one vertex. On
the other hand, relaxing the Disjoint Cycle Packing problem by limiting the number of cycles
each vertex can appear in has much more diverse consequences on the kernelization complexity. How-
ever, even though we obtain a polynomial kernel for Almost Disjoint Cycle Packing with t = k

c ,
where c is a constant, it is not clear whether the problem is even NP-complete in this case. It would be
very interesting to settle this question (probably more interesting to settle it negatively). Finally, it
would also be interesting to consider relaxed variants of more problems known to admit no polynomial
kernels and determine whether (for any of them) there exists a “smooth” relationship between relax-
ation parameters and kernelization complexity, i.e. whether kernel bounds improve as the relaxation
parameter increases.
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[28] J. Romero and A. López-Ortiz, The G-packing with t-overlap problem, in Algorithms and Computation - 8th

International Workshop, WALCOM, 2014, pp. 114–124.
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