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Abstract

Vertex Cover is one of the most well studied problems in the realm of parameterized
algorithms. It admits a kernel with O(`2) edges and 2` vertices where ` denotes the size of the
vertex cover we are seeking for. A natural question is whether Vertex Cover is fixed-parameter
tractable or admits a polynomial kernel with respect to a parameter k, that is, provably smaller
than the size of the vertex cover. Jansen and Bodlaender [STACS 2011, TOCS 2013] raised this
question and gave a kernel for Vertex Cover of size O(f3), where f is the size of a feedback
vertex set of the input graph. We continue this line of work and study Vertex Cover with
respect to a parameter that is always smaller than the solution size and incomparable to the size
of the feedback vertex set of the input graph. Our parameter is the number of vertices whose
removal results in a graph of maximum degree two. While vertex cover with this parameterization
can easily be shown to be fixed-parameter tractable (FPT), we show that it has a polynomial
kernel.

The input to our problem consists of an undirected graph G, S ⊆ V (G) such that |S| = k
and G[V (G) \ S] has maximum degree at most two and a positive integer `. Given (G,S, `), in
polynomial time we output an instance (G′, S′, `′) such that |V (G′)| is O(k5), |E(G′)| is O(k6)
and G has a vertex cover of size at most ` if and only if G′ has a vertex cover of size at most `′.

When G[V (G) \ S] has maximum degree at most one, we improve the known kernel bound
from O(k3) vertices to O(k2) vertices (and O(k3) edges). More generally, given (G,S, `) where
every connected component of G\S is a clique of at most d vertices (for constant d), in polynomial
time, we output an equivalent instance (G′, S′, `′) for the same problem where |V (G′)| is O(kd).
We also show that for this problem, when d ≥ 3, a kernel with O(kd−ε) bits cannot exist for any
ε > 0 unless NP ⊆ coNP/poly.

1 Introduction and Motivation

In the early years of parameterized complexity and algorithms, problems were almost always parameter-
ized by the solution size. Recent research has focussed on other parameterizations based on structural
parameters in the input [13], or above or below some tight guaranteed values [19, 20, 28, 6, 25, 12].
The reasons are many. Such ‘non-standard’ parameters are more likely to be small in practice. Also,
once a problem is shown to be fixed-parameter tractable (FPT) (see Section 2 for definitions) or to
have a polynomial kernel by a parameterization, it is natural to ask whether the problem is FPT (and
admits a polynomial kernel) when parameterized by a parameter that is provably smaller. In the same
vein, if we show that a problem is W-hard under a parameterization, it is natural to ask whether it is
FPT when parameterized by a parameter that is potentially larger.

One of the earliest papers in the realm of such alternate parameterization dates back to 1981. Let
Ok denote the set of all graphs G such that the length of the longest odd cycle is upper bounded by k.

∗A preliminary version of this paper [29] appeared in the proceedings of the 10th International Symposium on
Parameterized and Exact Computation (IPEC 2015).
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Hsu et al. [22] initiated a study of NP-hard optimization problems on Ok. In particular, they showed
that a maximum sized independent set on a graph in Ok on n vertices can be found in time nO(k).
Later, Grötschel and Nemhauser [18] did a similar study for Max-Cut and obtained an algorithm with
running time nO(k) on a graph in Ok on n vertices. These algorithms, using modern techniques, can be
made FPT and also shown to not admit polynomial kernels unless NP ⊆ coNP/poly [31]. Later Cai [4]
did a similar study for Coloring problems. Fellows et al. [14] studied alternate parameterizatons for
problems that were proven to be intractable with respect to standard parameterizations. This led to
the whole new ecology program and opened up a floodgate of new and exciting research. We refer to
Fellows et al. [13] for a detailed introduction to the whole program. The kernelization results tend to
be harder in this framework, as the rules need to capture the interaction of the structural parameter
with the rest of the input, against simply using the property of feasible solutions when ‘solution size’
is used as the parameter.

A vertex cover in a graph is a set of vertices that contains at least one endpoint from every edge of
the graph. In the Vertex Cover problem, given an undirected graph G and an integer `, the task is
to determine whether G has a vertex cover of size at most `. Vertex Cover is one of the most well
studied problems in the realm of parameterized algorithms and admits an algorithm with running
time 1.2738`nO(1) and a kernel with O(`2) edges and 2` vertices [5, 30]. The set S is also called vertex
cover of the graph. A natural question is whether Vertex Cover admits a polynomial kernel (or a
parameterized algorithm) with respect to a parameter k, that is, provably smaller than the size of the
vertex cover. Jansen and Bodlaender [23] first raised this question and since then the following are
some of the results known for Vertex Cover under different parameterizations.

• Vertex Cover admits a kernel of size O(f3), where f is the size of a feedback vertex set of
the input graph [23].

• For Vertex Cover parameterized by the size of an odd cycle transversal and König vertex
deletion set, there is a randomized polynomial kernel [27]. Here an odd cycle transversal is a set
of vertices whose deletion makes the resulting graph bipartite. A König vertex deletion set is a
set of vertices whose deletion makes the resulting graph into a König graph. A graph is said to
be a König graph if the size of its minimum vertex cover exactly equals the size of its maximum
matching. This result has recently been strengthened by Kratsch [26] who parameterized above
even a stronger lower bound on the solution, 2LP− µ(G), where LP denotes the optimum value
of the standard LP relaxation and µ(G) denotes the size of a maximum matching of the graph G.

• Vertex Cover parameterized by the deletion set to chordal graphs or perfect graphs has no
polynomial kernel unless NP ⊆ coNP/poly [2, 13]. A graph is said to be a chordal graph if it
has no induced cycle of length at least four. A perfect graph is a graph in which the chromatic
number of every induced subgraph equals the size of a largest clique of that subgraph.

• Vertex Cover parameterized by treewidth-2-modulator (i.e. when G[V (G) \ S] is a graph
of treewidth at most 2) has no polynomial kernel unless NP ⊆ coNP/poly [8]. In fact Vertex
Cover does not have polynomial kernel unless NP ⊆ coNP/poly when it is parameterized by
the size of a modulator to an outer-planar graph or even to a mock-forest [16]. A mock-forest is
a graph every vertex of which is contained in at most one cycle. It is easy to see that the size of
a degree-2-modulator is larger than all these parameters (discussed in this item) for which a
polynomial kernel is unlikely to exist. Also, the size of a degree-2-modulator is incomparable
with the size of a feedback vertex set for which there is a cubic kernel for Vertex Cover (see
Figure 1 for a hierarchy of parameters considered in this paper; some of the parameters are
explained in the description of our results and related work later in this section).

In this paper we continue this line of work on Vertex Cover and study it with respect to a
parameter that is always smaller than the solution size and incomparable to the feedback vertex set
of the input graph. In particular, we consider the Vertex Cover problem parameterized by the
number of vertices whose removal results in a graph of maximum degree at most d, where d ≥ 1.
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Figure 1: Hierarchy of parameters. An arrow from parameter a to parameter b indicates that the
minimum value of parameter b is at most the minimum value of parameter a. Parameters marked ?

indicate the ones considered in this paper.

Vertex Cover parameterized by degree-d-Modulator (VC-d-Mod)
Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G)\S] is a graph of degree
at most d and an integer `.
Parameter: k
Question: Does G have a vertex cover of size at most `?

Vertex Cover is known to be NP-Complete even on graphs of maximum degree 3 and thus the
d in VC-d-Mod must be upper bounded by 2, else we cannot even hope to have an algorithm of the
form nf(k) for any function f . On the other hand Vertex Cover is polynomial time solvable when
the maximum degree is at most 2 (or in other words, when every component of the graph is either an
isolated vertex or a path or a cycle).

Let G be the input graph along with a vertex subset S such that |S| ≤ k and G[V (G) \ S] has
maximum degree at most 2. We call S a degree-2-modulator of the graph. By ‘guessing’ (i.e. trying all
possible choices for) the intersection of S with the optimal vertex cover, and solving the remaining
problem in polynomial time, we can find a minimum vertex cover of G in O(2knO(1)) time. This shows
that VC-2-Mod is FPT. One of our main results is a polynomial kernel for VC-2-Mod.

Our Results.

• We obtain a kernel for VC-2-Mod with O(k5) vertices, and O(k6) edges. Strømme [34]
independently obtained a kernel with O(k7) vertices for this problem. Note that a graph with
degree at most 2 has treewidth at most 2. Hence, our result is in contrast to the fact that
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Vertex Cover parameterized by treewidth-2-modulator (i.e. when G[V (G) \ S] is a graph of
treewidth at most 2) has no polynomial kernel unless NP ⊆ coNP/poly [8].

• We extend our idea for VC-2-Mod to provide a kernel with O(k9) vertices when k is the number
of vertices whose deletion results in a graph that is a disjoint union of trees and cycles.

• We also address the kernelization question for VC-1-Mod. Here, a kernel with O(k3) vertices was
already known from the result by Jansen and Bodlaender [23] for Vertex Cover parameterized
by the feedback vertex set size. This follows as the size of the feedback vertex set is at most the
size of a degree-1-modulator. We improve the kernel size to O(k2) vertices.

• More generally, we consider the Vertex Cover problem when parameterized by the size of a
subset of vertices whose removal results in a graph with all components being cliques of size at
most a constant d. We call a graph G d-cluster graph if every connected component of G is a
clique and has size at most d. In particular we study the following problem

Vertex Cover parameterized by d-CVD (VC-param-d-CVD)
Input: An undirected graph G, S ⊆ V (G) of size at most k such that every connected component of
G[V (G) \ S] is a clique with at most d vertices and an integer `.
Parameter: k
Question: Does G have a vertex cover of size at most `?

Observe that VC-1-Mod and VC-param-2-CVD are the same problems. It is known that if
the resulting graph is simply a clique (with no bound on the size), then a polynomial kernel is
unlikely [2].

For VC-param-d-CVD, we provide a kernel with O(kd) vertices. At an intermediate step of
the kernel, we reduce the problem to an equivalent hypergraph problem. We believe that this
idea of using hyperedges to capture certain constraints could find applications while developing
a compression for a parameterized problem. We also show that for any d ≥ 3, ε > 0, a kernel of
O(kd−ε) size is unlikely unless NP ⊆ coNP/poly.

Observe that we have always assumed that the modulator is given as a part of the input. However,
this constraint can be relaxed as both VC-2-MOD and VC-param-d-CVD admit constant factor
approximation algorithms. Constant factor approximation algorithms can be obtained by greedily
finding an obstruction (like a vertex v with degree at least three and any of its three neighbors in the
case of VC-2-MOD) and selecting all the vertices in this obstruction to the approximate solution we
are constructing. For example, for VC-2-MOD, this results in a factor 4-approximation algorithm
and for VC-param-d-CVD, an approximation algorithm with factor (d+ 1). Thus, if the modulators
are not available as a part of the input, we can first compute them using the polynomial time constant
factor approximation algorithms and then run our kernelization algorithms using these modulators.
These will result in kernels with the same asymptotic upper bounds as mentioned above.

Related Work: Since the first appearance of our result on VC-2-Mod [29], Fomin and Strømme [17]
considered Vertex Cover parameterized by two related parameters: distance to a pseudo-forest
(a graph in which each component has at most one cycle), VC-Psuedo-Forest and to a mock-
forest, VC-Mock-Forest. They gave a O(k12) kernel for VC-Psuedo-Forest and proved that no
polynomial kernel is possible unless NP ⊆ coNP/poly for VC-Mock-Forest. Hols and Kratsch [21]
considered a parameter that generalizes our parameters and those of Fomin and Strømme [17] and
showed a kernel for Vertex Cover with O(k3d+9) vertices where k is the number of vertices whose
deletion results in a d-quasi-forest. A graph is said to be a d-quasi-forest when each of its components
has a feedback vertex set with at most d vertices. Note that a graph with maximum degree 2 is a
1-quasi-forest, and hence a degree-2-modulator is a modulator to a 1-quasi-forest. So the result due to
Hols and Kratsch [21] provides a kernel for VC-2-Mod with O(k12) vertices, while we give a kernel
with O(k5) vertices. Hols and Kratsch also observe that a modulator to a (d+ 2)-cluster graph is a
modulator to a d-quasi-forest and hence our lower bound result for VC-param-(d+ 2)-CVD provides
a lower bound result for Vertex Cover parameterized by a modulator to d-quasi-forest.
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Parameterization Polynomial Lower

Considered Kernel Bound

Solution Size 2k − c · log k vertices [28] Ω(k2) size [9]

k2 edges [7]

VC-1-Mod O(k3) vertices [23] Ω(k2) size [9]

Feedback Vertex Set O(k3) vertices [23] Ω(k2) size [9]

VC-1-Mod O(k2) vertices ? Ω(k2) size [9]

VC-2-Mod O(k7) vertices [34] Ω(k3) size ?

VC-2-Mod O(k5) vertices ? Ω(k3) size ?

Cluster Vertex Deletion No [2] –

VC-param-d-CVD O(kd) vertices ? Ω(kd) size ?

Treewidth-2-Modulator No [8] –

VC-Pseudo-Forest O(k12) vertices [16] Ω(k3) size ?

VC-Trees-Cycles O(k9) vertices ? Ω(k3) size ?

VC-d-Quasi-Forest O(k3d+9) [21] Ω(kd+2) size ?

VC-Mock-Forest No [16] –

Treedepth-d-Modulator O(k2
O(d2)

) size [3] Ω(kd) size ?

Table 1: Summary of Results: Results marked ? indicate our results

Bougeret and Sau [3] considered a related parameter which is the distance to a graph with treedepth

at most d, and showed a kernel of size O(k2
O(d2)

) for Vertex Cover; here k is the size of a set whose
deletion results in a graph with treedepth at most d (see [3] for the definition of treedepth). It turns
out that a clique with d vertices has treedepth d. So the parameter which is the distance to a graph
with treedepth at most d is a generalization of our parameterization in VC-param-d-CVD. Hence, the

result due to Bougeret and Sau [3] provides a kernel for VC-param-d-CVD of size O(k2
O(d2)

) while
our bound is O(kd). Similarly for the same reason, our lower bound result for VC-param-d-CVD
provides a lower bound result to Vertex Cover parameterized by treedepth-d-modulator. The focus
in Bougeret and Sau’s [3] and Hols and Kratsch’s [21] results are to show the existence of a polynomial
kernel for a more general parameter (rather than obtaining the smallest possible size) while our focus
is on giving as small a kernel as possible for the special parameters. See Table 1 for a summary of
these results.

Organization of the rest of the paper. In the next section, we give definitions and notations in
parameterized complexity including kernelization. We also state the expansion lemma used in several
of our kernel results. In Section 3, we develop our polynomial kernel for VC-2-Mod . In Section 4, we
give a polynomial kernel for vertex cover parameterized by a modulator whose removal results in a
graph whose each component is a tree or a cycle. In Section 5, we consider VC-param-d-CVD and
give polynomial kernels for each fixed d. In Section 6, we provide conditional lower bounds for the size
of the kernel for the problems considered in the paper.

2 Preliminaries and Definitions

We use N to denote the set of all natural numbers. For r ∈ N, by [r] we denote the set {1, 2, . . . , r}.
Given a set S, we use

(
S
r

)
to denote the collection of all subsets of S with exactly r elements. We use(

S
≤r
)

to denote the collection of all subsets of S with at most r elements. We use
(

S
≥r
)

to denote the
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collection of all subsets of S with at least r elements. We use standard graph theoretic terminology
from the book of Diestel [10] for the graph-related terms that are not explicitly defined here. We
consider only finite undirected graphs. We use n to denote the number of vertices and m to denote the
number of edges of the graph. For a graph G = (V,E), we use V (G) to denote the set of vertices and
E(G) to denote the set of edges. For a set X ⊆ V (G), the subgraph of G induced by X is denoted by
G[X] and it is defined as the subgraph of G with vertex set X and edge set {(u, v) ∈ E(G)|u, v ∈ X}.
Given a graph G = (V,E) and a subset X ⊆ V (G), we use G \X to denote the graph induced by
V (G) \ X. For a vertex v ∈ V (G), we use degG(v) to denote the degree of the vertex v in G. All
vertices adjacent to a vertex v are called neighbors of v and the set of all such vertices is called the
neighborhood of v. The neighborhood of v in G is denoted by NG(v). When the graph is clear from
the context, we omit the subscript. Throughout the paper we denote the vertex cover number (the
size of a minimum vertex cover) of G by vc(G).

Definition 2.1 (Fixed-Parameter Tractability). A parameterized problem Π is a subset of Σ∗ × N,
where Σ is a finite alphabet. We say that a parameterized problem Π is fixed-parameter tractable (or
FPT), if there is an algorithm solving the problem Π, that on input (x, k) runs in time f(k)|x|O(1),
where f : N 7→ N is an arbitrary computable function and |x| is the length of the input x.

Definition 2.2 (Kernelization). Let Π ⊆ Σ∗ × N be a parameterized problem. Kernelization is a
polynomial time procedure that replaces the input instance (I, k) by a reduced instance (I ′, k′) such that

• |I ′|+ k′ ≤ g(k) for some function g depending only on k, and

• (I, k) ∈ Π if and only if (I ′, k′) ∈ Π.

If g(k) ∈ kO(1), then we say that Π has a polynomial kernel.

It is well-known that a decidable parameterized problem is fixed-parameter tractable if and only if it
admits a kernelization (see [7]). Most of the kernelization procedures are based on reduction rules.
Next we define the notion of a reduction rule and when it is said to be safe.

Definition 2.3 (Safety of a Reduction Rule). A reduction rule that replaces an instance (I, k) of a
parameterized problem Π by a reduced instance (I ′, k′) is said to be safe when (I, k) ∈ Π if and only if
(I ′, k′) ∈ Π.

Tools and Techniques: One of the tools in our kernel result, and also in most of the polynomial
kernel results mentioned in the related work section, uses the idea of blocking sets inspired from Jansen
and Bodlaender [23]. A set X of vertices in G \S (where S is the modulator) is a blocking set in G \S
if vc(G \ (S ∪X)) + |X| > vc(G \ S). I.e. picking X into the solution results in an increase in the
size of the vertex cover we get (compared to a minimum vertex cover). We show that the minimal
blocking set of a connected component is bounded by a constant. Then using the idea of chunks (also
introduced by Jansen and Bodlaender) and conflicts, we bound the number of connected components
in G \ S as a function of the size of the modulator. This bounds the size of the feedback vertex set in
the graph by a function of k, as each component is a path or a cycle (and one vertex from each cycle
component forms a feedback vertex set). Now we can use use the following theorem by Jansen and
Bodlaender [23] to get a polynomial kernel.

Theorem 2.1. (see [23]) Vertex Cover parameterized by the size k, of a given feedback vertex set,
has a kernel with O(k3) vertices.

In order to give a tighter upper bound for the kernel size, we exploit more structural properties of
the modulator and use the following variation of Hall’s theorem known as expansion lemma in some of
the reduction rules.

Lemma 2.1 (q-Expansion Lemma). (see [15, 32, 35]) Let q be a positive integer and G be a bipartite
graph with vertex partition A and B such that |B| ≥ q|A| and there are no isolated vertices in B.
Then, there exists nonempty subsets X ⊆ A, Y ⊆ B obtainable in polynomial time, such that

• there is a q-expansion of X into Y . I.e. there is a M ⊆ E such that every vertex in X is incident
with exactly q edges of M . Moreover M saturates exactly q|X| vertices in Y , and

• NG(Y ) ⊆ X.
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3 Kernelization for VC-2-Mod

Throughout this section for an input (G,S, `) to VC-2-Mod we use F to denote V (G) \ S. We use
|S| ≤ k in Sections 3, 4, 5 and 6. Now, we are ready to describe the reduction rules that compress
G[F ] to an equivalent instance whose size is polynomial in k. The rules will be applied sequentially.
Note that, once a rule is applied, it is possible that some of the earlier rules may become applicable.
Hence after every rule is applied, we start from the beginning and apply the first applicable reduction
rule. We allow the input graph to have self loops, but no parallel edges. In particular, even if the
input graph has no self loop, some reduction rules (for example, Reduction Rule 3.7) may create self
loops. For every reduction rule, we denote the input instance as (G,S, `) and the reduced instance as
(G′, S′, `′). We use ← in the reduction rule to mean that the variable on the left is assigned the value
in the right of the arrow.

3.1 Ensuring minimum degree three

The following reduction rules are standard for the Vertex Cover problem (see, for example, Chapter
4 of Downey and Fellows [11] for correctness of these rules).

Reduction Rule 3.1 (Isolated Vertex Rule). Remove isolated vertices from G. Formally, if u is an
isolated vertex in G, then we set G′ ← G \ {u}, S′ ← S \ {u} and `′ ← `.

Reduction Rule 3.2 (Self Loop Rule). If there exists a vertex u ∈ V (G) such that there is a self
loop with u, then we set G′ ← G \ {u}, S′ ← S \ {u} and `′ ← `− 1.

Reduction Rule 3.3 (Degree 1 Rule). If there exists a vertex u ∈ V (G) such that degG(u) = 1 and
v is its unique neighbor, then we set G′ ← G \ {u, v}, S′ ← S \ {u, v} and `′ ← `− 1.

Reduction Rule 3.4 (Degree 2 Rule). If there exists a vertex u ∈ V (G) such that degG(u) = 2, let
v, w be its two neighbors in G, then do the following:

• If (v, w) ∈ E(G), then we set G′ ← G \ {u, v, w}, S′ ← S \ {u, v, w} and `′ ← `− 2.

• If (v, w) /∈ E(G), then set G′ ← (G \ {u, v, w}) ∪ {unew}, `′ ← `− 1, and make unew adjacent to
every vertex in NG({v, w}) \ {u}. If {u, v, w}∩S 6= ∅, then we set S′ ← (S \ {u, v, w})∪{unew}.
Otherwise we have that {u, v, w} ∩ S = ∅ and we set S′ ← S.

Note that Reduction Rule 3.4 actually contracts the edges incident on u one by one. It is not
immediate whether an application of Reduction Rule 3.4 would not increase the parameter. The
following observation explains why it does not increase.

Observation 1. Applications of Reduction Rules 3.1, 3.2, 3.3 and 3.4 do not increase the parameter
for VC-2-Mod problem.

Proof. Reduction Rules 3.1, 3.2, 3.3 only delete vertices and so do not increase the number of vertices
in S. In Reduction Rule 3.4, for the first case, it is easy to see that the parameter does not increase as
the vertices are only deleted. In the second case, when u, v, w are deleted from G and unew has been
added to G, if at least one of u, v, w was in S (i.e. {u, v, w} ∩ S 6= ∅) before applying this rule, then
the parameter does not increase despite the fact that unew is added to S. Because at least one vertex
is deleted from S and at most one vertex is added into S in such case. Let us consider the case when
u, v, w ∈ V (F ) before applying this rule. Note that N(unew) = (NG(v) ∪NG(w)) \ {u} and v and w
each has at most one neighbor other than u in F . In that case, unew is added to F and this vertex
has at most two neighbors in F . So, the parameter does not increase.

It is easy to see that Reduction Rules 3.1, 3.2, 3.3, and 3.4 can be performed in polynomial time.
When the above reduction rules are not applicable, the minimum degree of G is 3. Therefore, every
vertex v ∈ F has at least one neighbor in S. Now we partition F into F0, F1 and F2 such that every
connected component of G[F0] is an isolated vertex, every connected component of G[F1] is either a
path or a cycle of even length (length at least 4) and every connected component of G[F2] is an odd
cycle. In particular we will have following notations.
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• F := V (G) \ S.

• F0 – every connected component of G[F0] is an isolated vertex.

• F1 – every connected component of G[F1] is either a path or a cycle of even length.

• F2 – every connected component of G[F2] is an odd cycle.

3.2 Reduction Rules to bound G[F0 ∪ F1]

Our first step is to devise some reduction rules to bound the number of vertices in G[F0] and G[F1]. In
order to define such rules, we introduce a notion called Chunk. This notion will be useful not just for
VC-2-Mod, but also for VC-param-d-CVD. A variation of this definition was also given by Fomin
and Strømme [16] and by Bodlaender and Jansen [23].

Definition 3.1 (Chunk). Let (G,S, `) be a VC-2-Mod (or VC-param-d-VCD) instance. Then
X ⊆ S is a Chunk if the following properties hold.

• 1 ≤ |X| ≤ 3 for VC-2-Mod instance.

• 1 ≤ |X| ≤ d for VC-param-d-CVD instance.

• X is an independent set in G.

• |NG(X) ∩ F |+ vc(G[F \NG(X)]) ≤ vc(G[F ]) + |S|.

The intuition of defining Chunk is to find out suitable subsets of S which possibly could be fully
disjoint from a minimum vertex cover. In other words, if a set X ⊆ S is not a Chunk, that is,
|NG(X) ∩ F |+ vc(G[F \NG(X)]) ≥ vc(G[F ]) + |S|+ 1 holds, then we will show that any minimum
vertex cover of G must intersect X. A variation of the following lemma is due to Bodlaender and
Jansen [23] (see also Fomin and Strømme [16]).

Lemma 3.1. Let D be a minimum vertex cover of G. Then for all subsets S′ ⊆ S \D, |NG(S′) ∩
F |+ vc(G[F \NG(S′)]) ≤ vc(G[F ]) + |S|.

Proof. Let D be a minimum vertex cover of G and W be a minimum vertex cover of G[F ]. That is,
|D| = vc(G) and |W | = vc(G[F ]). Clearly |D| ≤ |S|+ vc(G[F ]) as S ∪W forms a vertex cover of G.

For the sake of contradiction assume that there exists S′ ⊆ S \D such that

|NG(S′) ∩ F |+ vc(G[F \NG(S′)]) ≥ vc(G[F ]) + |S|+ 1.

By the choice of S′, we know that S′ ∩D = ∅. Then, D must contain NG(S′) ∩ F from F and at
least vc(G[F \NG(S′)]) vertices from F . So, |D| ≥ |NG(S′)∩ F |+ vc(G[F \NG(S′)]). By assumption
|NG(S′)∩F |+vc(G[F \NG(S′)]) ≥ vc(G[F ])+|S|+1. Then |D| ≥ vc(G[F ])+|S|+1, contradiction.

If D is a minimum vertex cover, then X = S \ D is an independent set. Hence, we have the
following corollaries.

Corollary 3.1. Let (G,S, `) be an instance of VC-2-Mod (or VC-param-d-CVD) and let D be a
minimum vertex cover of G. Then, any X ⊆ S \D where 1 ≤ |X| ≤ 3 (or 1 ≤ |X| ≤ d respectively) is
a Chunk.

Corollary 3.2. Let (G,S, `) be an instance of VC-2-Mod (or VC-param-d-CVD) and let D be a
minimum vertex cover of G. Then, for any independent set X ⊆ S, where 1 ≤ |X| ≤ 3 (or 1 ≤ |X| ≤ d
respectively), if X is not a Chunk, then D ∩X 6= ∅.

Now we have the following Reduction Rule.

Reduction Rule 3.5 (Non-Chunk-Rule-I). If there exists a vertex x ∈ S such that {x} is not a Chunk
(or formally vc(G[F \NG(x)])+|NG(x)∩F | ≥ vc(G[F ])+|S|+1), then we set G′ ← G\{x}, S′ ← S\{x}
and `′ ← `− 1.
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The proof of the next result follows from Corollary 3.2.

Lemma 3.2. Reduction Rule 3.5 is safe.

Next we generalize Non-Chunk-Rule-I to non-Chunks of size 2.

Reduction Rule 3.6 (Non-Chunk-Rule-II). If there exists x, y ∈ S, (x, y) /∈ E(G) such that {x, y} is
not a Chunk (or formally vc(G[F \NG({x, y})]) + |NG({x, y}) ∩ F | ≥ vc(G[F ]) + |S|+ 1), then add
the edge (x, y) to get the new graph G′. We set S′ ← S and `′ ← `.

Lemma 3.3. Reduction Rule 3.6 is safe.

Proof. The proof of this lemma is also based on the Corollary 3.2. Suppose D is a minimum vertex
cover of G. By Corollary 3.2 we know that D ∩X 6= ∅. By the precondition of the reduction rule,
{x, y} is not a Chunk. So, any minimum vertex cover of G must contain at least one of x or y. Adding
an edge between x and y captures this constraint. Hence the reduction rule is safe.

Remark 1. Let F be a graph class that is hereditary and closed under contraction of edges. Fur-
thermore, suppose that Vertex Cover is polynomial time solvable in any graph belonging to graph
class F . Let S be a modulator to a graph F ∈ F . Then, we note that the proofs of correctness of the
Reduction Rules 3.1 to 3.6 also apply when the parameter is |S|, i.e.

• Reduction Rules 3.1 to 3.6 are applicable to Vertex Cover parameterized by |S|, and

• Reduction Rules 3.1 to 3.6 do not increase |S|.
Note that while Reduction Rule 3.6 does not decrease the size of the graph or `, it does enable

the applicability of some rules (for example, Reduction Rule 3.7). Our next reduction rule is a slight
variation of the one proposed by Jansen and Bodlaender [23] for Vertex Cover parameterized by
the feedback vertex set number.

Reduction Rule 3.7 (Edge Rule). If there exists an edge (u, v) ∈ E(G[F ]) such that (NG(u) ∩ S) ∩
(NG(v) ∩ S) = ∅ and for all x ∈ NG(u) ∩ S, for all y ∈ NG(v) ∩ S we have that (x, y) ∈ E(G), then
do the following.

• Delete u, v from the graph.

• If u has a neighbor t in F that is not v, then make t adjacent to every vertex in NG(v) ∩ S.

• If v has a neighbor w in F that is not u, then make w adjacent to every vertex in NG(u) ∩ S.

• If the vertices t, w exist, then they are unique and add the edge (t, w). Note that if t 6= w and
(t, w) was already an edge in G, then we don’t add any extra edge (t, w). If t = w (this case can
happen when (u, v) ∈ E(G[F2])), then we add a self loop in t.

• Set `′ to `− 1.

Let G′ be the new graph and we set S′ ← S (see Figure 2 for an illustration).

Lemma 3.4. Reduction Rule 3.7 is safe.

Proof. We give the proof for different cases as vertices t and w both need not necessarily exist.

1. Both t and w exist: Let G′ be the graph obtained after applying the reduction rule on G.
Observe that since for all x ∈ NG(u) ∩ S and for all y ∈ NG(v) ∩ S, we have that (x, y) ∈ E(G),
any vertex cover (not necessary minimum) of G (and also G′) must contain either NG(u) ∩ S or
NG(v) ∩ S (or both).

We first give the proof for the reverse direction of the reduction rule. Let D be a vertex cover
for G′ of size at most `− 1. Recall, that (t, w) ∈ E(G′). Now based on which vertice(s) from
{t, w} belong to D, we have the following cases.

• Suppose that t ∈ D,w /∈ D. By our construction, we made w adjacent to every vertex in
NG(u) ∩ S in G′. Thus, NG(u) ∩ S ⊆ D. Given this observation one can easily show that
D ∪ {v} is a vertex cover for G of size at most `.
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Figure 2: An illustration of Reduction Rule 3.7.

• Suppose that t /∈ D,w ∈ D. By our construction, we made t adjacent to every vertex in
NG(v) ∩ S in G′. Thus, NG(v) ∩ S ⊆ D. Given this observation, as before, one can easily
show that D ∪ {u} is a vertex cover for G of size at most `.

• Suppose that t,w ∈ D. We know that in both G as well as in G′, either NG(u)∩ S ⊆ D or
NG(v) ∩ S ⊆ D. If NG(u) ∩ S ⊆ D, then D ∪ {v} is a vertex cover for G of size at most `,
else D ∪ {u} is a vertex cover for G of size at most `.

We now give the proof for the forward direction of the reduction rule. Let D be a vertex cover of
G of size at most `. We have several cases based on which endpoint(s) of the edge (u, v) ∈ E(G)
belong to D.

• Suppose that u ∈ D,v /∈ D. Since v /∈ D, we have that NG(v) ⊆ D. This also implies that
w ∈ D. Let D′ = D \ {u}. We know that the edges of the form (w, x) are added in G′

where x ∈ NG(u) ∩ S. D′ overs these edges because w ∈ D′. Also the edges of the form
(t, y) are added in G′ where y ∈ NG(v) ∩ S. As NG(v) ∩ S ⊆ D, hence NG(v) ∩ S ⊆ D′.
Hence these edges are also covered by D′. Also the edge (t, w) is added if it was not an
edge in G. As w ∈ D′, this edge is also covered by D′. Thus, D′ is a vertex cover of G′ of
size at most `− 1.

• Suppose that u /∈ D,v ∈ D. By our assumption, we have that NG(u) ⊆ D. This also
implies that t ∈ D. Let D′ = D \ {v}. By an argument similar to the previous case we can
prove that D′ is a vertex cover of G′ of size at most `− 1.

• Suppose that u,v ∈ D. By the precondition of the reduction rule, either NG(u) ∩ S ⊆ D
or NG(v) ∩ S ⊆ D. Suppose NG(u) ∩ S ⊆ D. Then let D′ = (D \ {u, v}) ∪ {t}. We know
that the edges of the form (w, x) are added in G′ where x ∈ NG(u) ∩ S. D′ covers these
edges because NG(u) ∩ S ⊆ D′. Also the edges of the form (t, y) are added in G′ where
y ∈ NG(v)∩S. As t ∈ D′, these edges are also covered by D′. Also the edge (t, w) is added
if it was not an edge in G. This edge is also covered by t. So, when NG(u) ∩ S ⊆ D, then
(D \ {u, v}) ∪ {t} is a vertex cover of G′ of size at most `− 1. Similarly if NG(v) ∩ S ⊆ D,
then (D \ {u, v}) ∪ {w} is a vertex cover of G′ of size at most `− 1.

Note that when t = w, then the component in which this reduction rule is applied is a triangle.
Also an edge is added between t and any vertex a ∈ (NG(u) ∪ NG(v)) ∩ S. A self loop gets
created in vertex t as well. In that case for reverse direction, we have that t must be a part of
any solution. We have already mentioned that after application of this reduction rule, we again
check if some rule from Reduction Rules 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 is applicable. In this case
when t = w, then Reduction Rule 3.2 becomes applicable and hence vertex t also gets deleted
immediately after that.

2. Vertex t exists but w does not exist:
(⇐) Let D be a vertex cover of G′.
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• If t ∈ D. There are two cases now. We know that either NG(u)∩S ⊆ D or NG(v)∩S ⊆ D.
If NG(u) ∩ S ⊆ D, then D ∪ {v} is a vertex cover of G. Symmetrically if NG(v) ∩ S ⊆ D,
then D ∪ {u} is a vertex cover of G.

• If t /∈ D, then NG′(t)∩ S ⊆ D. In that case, NG(v)∩ S ⊆ D. So, D ∪ {u} is a vertex cover
of G.

(⇒) Let D be a vertex cover of G.

• Suppose that u ∈ D, v /∈ D. Then NG(v) ∩ S ⊆ D. Now note that the edges of the form
(t, x) are added in G′ where x ∈ NG(v) ∩ S. Consider D′ = D \ {u}. As NG(v) ∩ S ⊆ D′,
the newly added edges are also covered. So D′ is a vertex cover of G′ of size at most `− 1.

• Suppose that u /∈ D, v ∈ D. Then NG(u) ∩ S ⊆ D. Also t ∈ D. Consider D′ = D \ {v}.
Now note that the edges of the form (t, x) are added in G′ where x ∈ NG(v)∩S. As t ∈ D′,
such edges are covered by D′. So D′ is a vertex cover of G′ of size at most `− 1.

• Suppose that u, v ∈ D. Even in this case also either NG(u) ∩ S ⊆ D or NG(v) ∩ S ⊆ D. If
NG(u) ∩ S ⊆ D, then we say that (D \ {u, v}) ∪ {t} is a vertex cover of G′ as the newly
added edges are (t, x) with x ∈ NG(v) ∩ S. Otherwise if NG(v) ∩ S ⊆ D, then D \ {u, v} is
a vertex cover of G′ as the newly added edges are being covered by NG(v) ∩ S (if not by t
already).

3. Vertex w exists but t does not exist: This case is symmetric to Case 2 above.

4. Neither w nor t exists: In this case, we just delete u and v from G. As NG(u) ∩ S and
NG(v) ∩ S form complete bipartite graph, we can argue easily that exactly one from u and v is
part of any optimal solution. Note that vc(G) ≥ vc(G′) + 1 as (u, v) ∈ E(G). So the forward
direction easily follows. Now let D′ be a vertex cover of G′. Then if NG(u) ∩ S ⊆ D′, we
construct D = D′ ∪ {v}. Clearly D covers the edge (u, v) and all other edges incident to u are
already covered. Hence D is a vertex cover of G. Similarly if NG(v) ∩ S ⊆ D′, we construct
D = D′ ∪ {u} which is a vertex cover of G. So vc(G) ≤ vc(G′) + 1. So the reduction rule is safe.

This completes the proof the lemma.

Lemma 3.5. Reduction Rules 3.5, 3.6, and 3.7 can be implemented in polynomial time.

Proof. Reduction Rule 3.5 requires us to check if the condition vc(G[F \NG(x)]) + |NG(x) ∩ F | ≥
vc(G[F ]) + |S|+ 1 holds for a vertex in S. Since G[F ] is a graph of degree at most two, minimum
vertex cover of G[F ] can be computed in polynomial time. G[F \NG(x)] is an induced subgraph of
G[F ]. Therefore, minimum vertex cover of G[F \NG(x)] also can be computed in polynomial time.
Thus, Reduction Rule 3.5 can be performed in polynomial time. By a similar argument as above, we
can show that Reduction Rule 3.6 can be applied in polynomial time.

To apply Reduction Rule 3.7, we need to check if there exists an edge (u, v) ∈ E(G[F ]) such
that NG(u) ∩ NG(v) ∩ S = ∅. Suppose NG(u) ∩ NG(v) ∩ S = ∅, then we check whether for every
x ∈ NG(u) ∩ S and for every y ∈ NG(v) ∩ S, (x, y) ∈ E(G). If we succeed here also then we need to
modify G locally to obtain G′. Clearly, all this can be done in polynomial time. This completes the
proof.

Now, in order to bound the number of vertices in F0 and F1, we proceed to summarize some of the
properties of G[F0 ∪F1] when Reduction Rules 3.1 to 3.7 are no longer applicable. If X ⊆ V (G), then
clearly vc(G) ≤ |X|+ vc(G \X). The following lemma shows that when X satisfies some interesting
properties, then we can prove a stronger inequality.

Lemma 3.6. Let G = (V,E) be a graph. Then the following statements are true.

1. Let V0 be the set of isolated vertices in G. Let X ⊆ V (G) such that |X ∩ V0| = r, then
|X|+ vc(G \X) ≥ vc(G) + r.

2. Let G be a bipartite graph and M be a maximum matching in G. If X ⊆ V (G) be such that X
contains both the endpoints of r edges of M , then |X|+ vc(G \X) ≥ vc(G) + r.
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Proof. Let G = (V,E) be a graph. We prove the statements in the given order.

1. Consider any minimum vertex cover D∗ of G. As vertices of V0 do not cover any edge, D∗∩V0 = ∅.
So, |D∗| = vc(G) = vc(G \ V0). Clearly,

|X|+ vc(G \X) = |X ∩ V0|+ |X \ V0|+ vc(G \X)

and |X \ V0|+ vc(G \X) ≥ vc(G \ V0) = vc(G). So we get the following

|X ∩ V0|+ |X \ V0|+ vc(G \X) ≥ r + vc(G)

|X|+ vc(G \X) ≥ vc(G) + r

2. Let G be a bipartite graph and M be a maximum matching in G. Given X ⊆ V (G), let
X contains both endpoints of r edges of M . We know by König’s Theorem (see [10]) that
vc(G) = |M |.
Let M ′ = {(u, v) ∈M |u, v ∈ X} be the set of r edges of M with both endpoints in X.

|X|+ vc(G \X) = |V (M ′) ∩X|+ |X \ V (M ′)|+ vc(G \X) = 2r + |X \ V (M ′)|+ vc(G \X)

Now we know that |X \ V (M ′)|+ vc(G \X) ≥ vc(G \ V (M ′)). Now vc(G \ V (M ′)) also has a
matching of size |M | − |M ′| = |M | − r. So, vc(G \ V (M ′)) ≥ |M | − r. So we have that

2r + |X \ V (M ′)|+ vc(G \X) ≥ 2r + vc(G \ V (M ′)) ≥ 2r + |M | − r = vc(G) + r

This completes the proof of the lemma.

Using the above lemma, we get the following properties of G[F0 ∪ F1] when Reduction Rules 3.1
to 3.7 are not applicable.

Lemma 3.7. Let (G,S, `) be an instance to VC-2-Mod on which Reduction Rules 3.1 to 3.7 are
not applicable. Furthermore, let F, F0, F1 and F2 be as defined previously and let M be a maximum
matching of G[F1]. Then the following statements are true.

1. For every x ∈ S, |NG(x) ∩ F0| ≤ |S|.
2. For every x ∈ S, NG(x) ∩ F1 contains both the endpoints of at most |S| edges of M .

3. For every (x, y) /∈ E(G[S]), NG({x, y}) ∩ F1 contains both the endpoints of at most |S| edges of
M .

4. For every edge (u, v) ∈ E(G[F ]), either NG(u)∩NG(v)∩S 6= ∅ or there exist s ∈ NG(u)∩S, t ∈
NG(v) ∩ S such that (s, t) /∈ E(G).

Proof. We prove the statements in the given order.

1. Suppose that there exists a vertex x ∈ S, such that |NG(x)∩F0| = r ≥ |S|+1. Let X = NG(x)∩F .
Then |X ∩ F0| = r ≥ |S| + 1. Hence by Lemma 3.6, we have that |X| + vc(G[F \ X]) ≥
vc(G[F ]) + r ≥ vc(G[F ]) + |S|+ 1. Then, {x} is not a Chunk. Therefore, Reduction Rule 3.5
becomes applicable which is a contradiction. Hence, |NG(x) ∩ F0| ≤ |S|.

2. Suppose the claim is not true. Let NG(x) contains both the the endpoints of r edges of M . By
our assumption, r ≥ |S|+ 1. Let X = NG(x) ∩ F . Now consider vc(G[F \X]) + |X|. We know
the following.

vc(G[F \X]) + |X| = vc(G[(F1 ∪ F0) \X]) + vc(G[F2 \X]) + |X ∩ (F1 ∪ F0)|+ |X ∩ F2|

Now, we have that vc(G[F2 \X]) + |X ∩ F2| ≥ vc(G[F2]). We know that G[F0 ∪ F1] is bipartite.
Recall that X = NG(x) ∩ F and X contains both endpoints of r edges of M . Also M is
a maximum matching in G[F0 ∪ F1]. Hence, in particular X ∩ (F0 ∪ F1) also contains both
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endpoints of r edges of M . By Lemma 3.6, we have that vc(G[(F1 ∪F0) \X]) + |X ∩ (F1 ∪F0)| ≥
vc(G[F1 ∪ F0]) + r ≥ vc(G[F1 ∪ F0]) + |S|+ 1. Then,

vc(G[F \X]) + |X| = vc(G[(F1 ∪ F0) \X]) + vc(G[F2 \X]) + |X ∩ (F1 ∪ F0)|+ |X ∩ F2|
≥ vc(G[F0 ∪ F1]) + |S|+ 1 + vc(G[F2]) = vc(G[F ]) + |S|+ 1

Then, {x} is not a Chunk. But then Reduction Rule 3.5 becomes applicable which is a contradic-
tion.

3. Suppose the claim is not true. Let (x, y) be a pair of nonadjacent vertices of S such that
X = NG({x, y}) ∩ F that contains both the endpoints of r edges of M . By our assumption,
r ≥ |S|+ 1. Now consider vc(G[F \X]) + |X|. We know that

vc(G[F \X]) + |X| = vc(G[(F1 ∪ F0) \X]) + vc(G[F2 \X]) + |X ∩ (F1 ∪ F0)|+ |X ∩ F2|
Now, we have that vc(G[F2 \X]) + |X ∩ F2| ≥ vc(G[F2]). We know that G[F0 ∪ F1] is bipartite.
Recall that X = NG({x, y}) ∩ F and X contains both endpoints of r edges of M . Also M is
a maximum matching in G[F0 ∪ F1]. Hence, in particular X ∩ (F0 ∪ F1) also contains both
endpoints of r edges of M . By Lemma 3.6, we have that vc(G[(F1 ∪F0) \X]) + |X ∩ (F1 ∪F0)| ≥
vc(G[F1 ∪ F0]) + r ≥ vc(G[F1 ∪ F0]) + |S|+ 1. Then,

vc(G[F \X]) + |X| = vc(G[(F1 ∪ F0) \X]) + vc(G[F2 \X]) + |X ∩ (F1 ∪ F0)|+ |X ∩ F2|
≥ vc(G[F0 ∪ F1]) + |S|+ 1 + vc(G[F2]) = vc(G[F ]) + |S|+ 1

Then, {x, y} is not a Chunk. But then Reduction Rule 3.6 becomes applicable which is a
contradiction.

4. As Reduction Rules 3.1, 3.2, 3.3 and 3.4 are not applicable, every vertex in F has at least
one neighbor in S. So, for any u ∈ F , we have that NG(u) ∩ S 6= ∅. If there exists an edge
(u, v) ∈ E(G[F ]) such that NG(u) ∩ NG(v) ∩ S = ∅ and for every x ∈ NG(u) ∩ S, for every
y ∈ NG(v) ∩ S we have that (x, y) ∈ E(G), then Reduction Rule 3.7 is applicable. So, its
contrapositive statement would be the following. If Reduction Rule 3.7 is not applicable, then
for any edge (u, v) ∈ E(G[F ]) either NG(u) ∩NG(v) ∩ S 6= ∅ or there exist s ∈ NG(u) ∩ S and
t ∈ NG(v) ∩ S such that (s, t) /∈ E(G).

This completes the proof the lemma.

Now, we are ready to bound the number of vertices in G[F1 ∪ F0] to show the following.

Lemma 3.8. When Reduction Rules 3.1 to 3.7 are not applicable then G[F1 ∪F0] has O(k3) vertices.

Proof. By inapplicability of Reduction Rules 3.1, 3.2, 3.3, 3.4, we know that every vertex in F
(in fact F0 ∪ F1) has at least one neighbor in S. From Lemma 3.7, we see that for every x ∈ S,
|NG(x) ∩ F0| ≤ |S|. Therefore, |F0| ≤ |S|2 = k2.

We define a function f : E(G[F1]) 7→ S ∪
(
S
2

)
as follows.

f((u, v)) =

{
x if x ∈ NG(u) ∩NG(v) ∩ S (fix an x arbitrarily)

(x, y) if there exist x ∈ NG(u) ∩ S, y ∈ NG(v) ∩ S s.t. (x, y) /∈ E(G) (fix an (x, y) arbitrarily)

We know that for every edge (u, v) ∈ G[F1], either an x ∈ S or a pair (x, y) ∈
(
S
2

)
as defined

above, exists as Reduction Rules 3.4 and 3.7 are not applicable. So, f is well defined. For every edge
(u, v) ∈ E(G[F ]) we associate x ∈ S (or (x, y) ∈

(
S
2

)
) as provided by function f . Fix a maximum

matching M from G[F1]. Now for every x ∈ S (and also for every (x, y) ∈
(
S
2

)
such that (x, y) /∈ E(G)),

NG(x) ∩ F1 (and also NG({x, y}) ∩ F1)) contains both the endpoints of at most |S| edges in M by
Lemma 3.7. So a vertex in S or a non-edge between a pair of points in S is a pre-image of f of at
most |S| edges of E(G[F1]) ∩M . Therefore

|E(G[F1]) ∩M | ≤ (|S|+
(|S|

2

)
)|S| ≤ (k +

(
k

2

)
)k

So the number of edges in F1 matched by M is O(k3). The number of vertices in F1 that are not
matched by M are at most |M |. Therefore, |F1| is O(k3). So, G[F0 ∪ F1] has O(k3) vertices.
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Note that though the Reduction Rule 3.7 is applicable for any edge in G[F ], in Lemma 3.8, we
apply it only for the edges in G[F1] and hence we cannot yet deduce a bound on the total number of
edges in G[F ] (in particular in G[F2]). This is because the proof of Lemma 3.7 uses the fact that M is
a matching in the bipartite graph G[F1]. However, in Sections 3.3 and 3.4 we will develop a few more
reduction rules that can help us to bound the number of edges in G[F2].

3.3 Bounding the number of odd cycles

Now to obtain the kernel, all we are left to do is to bound the size of G[F2]. Here we first give rules to
bound the number of odd cycles. As every component in G[F2] is an odd cycle, we interchangeably
use the term component or odd cycle to mean the same thing in G[F2]. Central to the rules in this
subsection is the notion of a blocking set, we define the notion and prove some properties about them
first.

Definition 3.2 (Blocking Set and Good Set). Let B ⊆ V (G). We call B to be a blocking set if
vc(G[V (G) \ B]) + |B| > vc(G). We call a blocking set B to be a minimal blocking set if no proper
subset of B is a blocking set. A set B ⊆ V (G) is called a good set if it is not a blocking set.

If an algorithm picks the vertices of a blocking set B into a solution, then any way to complete it
to a feasible vertex cover results in a non-optimal solution. So the blocking set does not allow us to
complete it to an optimal solution and forces to produce a sub-optimal solution. For example, in a
cycle of even length, {u, v} is a blocking set for any edge e = (u, v) as no optimum solution for the
cycle contains two vertices of the same edge. We will apply these notions to G[F ]. Based on Reduction
Rules 3.5 and 3.6, we can prove the following lemma.

Lemma 3.9. When Reduction Rules 3.5 and 3.6 are not applicable, the following statements are true.

1. For every x ∈ S, NG(x) ∩ F contains a blocking set in at most |S| cycles in G[F2].

2. For every x, y ∈ S, (x, y) /∈ E(G), NG({x, y}) ∩ F contains a blocking set in at most |S| cycles
in G[F2].

Proof. The proof of this lemma uses arguments that are similar to the arguments in Lemma 3.7 and
some properties of blocking set in odd cycles. We prove the statements in the given order.

1. Suppose that NG(x)∩ F contains a blocking set in at least |S|+ 1 odd cycles. Then there are at
least |S|+ 1 cycles D1, D2, . . . , D|S|+1 ∈ G[F2] such that for each j ∈ [|S|+ 1], |NG(x) ∩Dj |+
vc(Dj \NG(x)) ≥ vc(Dj) + 1. So, |NG(x) ∩ F2|+ vc(G[F2 \NG(x)]) ≥ vc(G[F2]) + |S|+ 1. So,

|NG(x) ∩ F |+ vc(G[F \NG(x)])

= |NG(x) ∩ F2|+ vc(G[F2 \NG(x)]) + |NG(x) ∩ (F1 ∪ F0)|+ vc(G[(F1 ∪ F0) \NG(x)])

≥ vc(G[F2]) + |S|+ 1 + vc(G[F1 ∪ F0]) = vc(G[F ]) + |S|+ 1

It means that {x} is not a Chunk. So, Reduction Rule 3.5 is applicable which is a contradiction.

2. Suppose that NG({x, y}) ∩ F contains a blocking set in at least |S| + 1 odd cycles. Then
there are at least |S| + 1 cycles D1, D2, . . . , D|S|+1 ∈ G[F2] such that for each j ∈ [|S| + 1],
|NG({x, y}) ∩ Dj | + vc(Dj \ NG({x, y})) ≥ vc(Dj) + 1. So, |NG({x, y}) ∩ F2| + vc(G[F2 \
NG({x, y})]) ≥ vc(G[F2]) + |S|+ 1. So,

|NG({x, y}) ∩ F |+ vc(G[F \NG({x, y})])

= |NG({x, y})∩F2|+vc(G[F2\NG({x, y})])+|NG({x, y})∩(F1∪F0)|+vc(G[(F1∪F0)\NG({x, y})])
≥ vc(G[F2]) + |S|+ 1 + vc(G[F1 ∪ F0]) = vc(G[F ]) + |S|+ 1

So, {x, y} is not a Chunk. It means that Reduction Rule 3.6 is applicable which is a contradiction.
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This completes the proof of the lemma.

We now show that the above lemma already suffices to bound the number of some specific types of
components in G[F2]. Towards that we first partition the set of components in G[F2] as B1,B2,B3
and B4 as follows.

• B1 = {C|C is a component in G[F2] and there exists x ∈ S such that NG(x) ∩ C
contains a blocking set in C}.

• B2 = {C|C is a component in G[F2] and there exist x, y ∈ S, (x, y) /∈ E(G) such
that C ∩ (NG(x) ∪NG(y)) contains a blocking set in C} \ B1.

• B3 = {C|C is a component in G[F2] and there exist x, y, z ∈ S, {x, y, z} is inde-
pendent set such that C ∩ (NG(x) ∪ NG(y) ∪ NG(z)) contains a blocking set in
C} \ (B1 ∪ B2).

• B4 = {Components in G[F2] that are not in B1 ∪ B2 ∪ B3}.

Note that if C ∈ B2 then for any blocking set B in C, B 6⊂ NG(x) for any x ∈ S and if C ∈ B3,
then for any blocking set B in C, B 6⊂ NG(A) for any independent set A of size at most two in S.

The following corollaries follow immediately from Lemma 3.9.

Corollary 3.3. When Reduction Rules 3.5 and 3.6 are not applicable, |B1| ≤ k2.

Proof. We define a function f : B1 7→ S such that f(C) = x where NG(x) ∩ C contains a blocking set
in C (if there are more than one vertex, choose one arbitrarily).

We know that such an x exists for every C ∈ B1 by definition of B1. Now by Lemma 3.9, for every
x ∈ S there are at most |S| ≤ k cycles in G[F2] such that NG(x) contains a blocking set in each of
those cycles. So for every x ∈ S there are at most |S| ≤ k cycles in B1 such that NG(x) contains a
blocking set in each of those cycles. Therefore, |B1| ≤ k2.

Corollary 3.4. When Reduction Rules 3.5 and 3.6 are not applicable, |B2| ≤ k
(
k
2

)
.

Proof. We define a function f : B2 7→
(
S
2

)
such that f(C) = (x, y) where (x, y) /∈ E(G), x, y ∈ S and

NG({x, y}) ∩C contains a blocking set in C (if there is more than one such pair, then choose one pair
arbitrarily).

We know that such a nonadjacent pair (x, y) exists for every C ∈ B2 by definition of B2. Now
by Lemma 3.9, for every x, y ∈ S, (x, y) /∈ E(G) there are at most |S| ≤ k cycles in G[F2] such that
NG({x, y}) contains a blocking set in each of those cycles. So for every x, y ∈ S, (x, y) /∈ E(G) there
are at most |S| ≤ k cycles in B2 such that NG({x, y}) contains a blocking set in each of those cycles.
Therefore, |B2| ≤ k

(
k
2

)
.

Now, in the rest of the section, we bound the number of remaining components, in particular
those that have blocking sets that are neighbors to more than two vertices of S or those that have no
blocking sets. Our main observation that helps to do this is that in an odd cycle, minimal blocking
sets are of size exactly three.
Properties of Blocking Set: Let C be a cycle in G[F2] and let its vertices be ordered clockwise as
a0, a1, . . . , a|C|−1. Let ai, aj be two vertices of C. Then by dist(ai, aj), we mean the number of edges
in the clockwise path in C that goes through the vertices ai+1, ai+2, . . . , aj−1 where the subscripts are
taken mod |C|. The following statement is easy to verify.

Observation 2. In a cycle, no single vertex forms a blocking set and hence minimal blocking sets are
of size at least 2.

It is easy to see that the following remark holds true for a minimal blocking set in G[F ].

Remark 2. Let B ⊆ F be a minimal blocking set in G[F ]. Then there exists a unique C for which
B ⊆ V (C) where C is a component of G[F ].
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Theorem 3.1. • Let C = {a1, . . . , a2r+1} be an odd cycle and B ⊆ V (C). If B is a minimal
blocking set, then |B| = 3 and the clockwise distance between every pair of consecutive vertices in
B is odd.

• Let C = {a1, . . . , a2r} be an even cycle and B ⊆ V (C). If B is a minimal blocking set, then
|B| = 2 and the clockwise distance between every pair of consecutive vertices in B is odd.

Proof. To prove Theorem 3.1, we need to establish the following lemmas.

Lemma 3.10. Let C = {a1, . . . , ar} be a cycle, and let B ⊆ C of size q at least 2, such that at most
one consecutive pair of vertices ai, aj mod r ∈ B, i < j is such that dist(ai, aj mod r) is odd. Then B
is a good set.

Proof. Let i1 < i2 < . . . < iq be the vertices of B in the order in which they appear in C. Suppose that
dist(ail mod r, ai(l+1) mod r) is even for every l. Then, each of the q components of C \B is a path with
an odd number of vertices. Let pi be the number of vertices of the i-th component (in some order), for

i = 1 to q whose vertex cover number is (pi−1)/2. Thus we have, vc(C \B) + |B| = ∑q
i=1

(pi−1)
2 + q =∑q

i=1
(pi+1)

2 . But
∑q

i=1 pi + q = |C| = r and hence vc(C \B) + |B| = |C|/2 = r/2 ≤ vc(C). The last
inequality follows as if r is even, then vc(C) = r/2 and is (r + 1)/2 otherwise. Hence B is a good set.

Suppose that for exactly one l, dist(ail mod r, ail+1 mod r) is odd. Then r is necessarily odd. In
that case, by similar arguments, we can prove that vc(C \B) + |B| = (|C|+ 1)/2 = (r + 1)/2 = vc(C)
and hence again B is a good set.

Lemma 3.11. Let C be a cycle of length r and let B ⊂ C of size q ≥ 2 such that the clockwise
distance between every consecutive pair of vertices in B is odd. Then B is a blocking set.

Proof. Every component of C \B is a path with an even number pi of vertices. Hence as in the proof
the previous lemma, we have vc(C \B) + |B| = ∑q

i=1 pi/2 + q =
∑q

i=1(pi + 2)/2 = |C|/2 + q/2.

If q = 2, then |C| is even (as it is the sum of two odd numbers) and vc(C) = |C|
2 and hence

vc(C \B) + |B| = |C|
2 + 1 > vc(C).

If q > 2, then |C|2 + q
2 ≥

|C|+3
2 ≥ |C|+1

2 + 1 ≥ vc(C) + 1 and hence vc(C \B) + |B| > vc(C). Hence
in all cases B is a blocking set.

Proof of Theorem 3.1: From Observation 2, no single vertex of any cycle forms a blocking set.

• For an odd cycle, let B = {ai1 , . . . , aip} be a minimal blocking set of size at least 4. Without loss
of generality let us assume that dist(ai1 , ai2) is odd. If dist(ait , ait+1

) is even for all 2 ≤ t ≤ p−1,
then dist(aip , ai1) is even as the length of cycle is odd. But then the distance between at most one
consecutive pair of vertices is odd. Then B is a good set by Lemma 3.10. This is a contradiction.
Then there exists t ≥ 2 such that dist(ait , ait+1

) is odd. Lets pick the smallest t ≥ 2 such
that dist(ait , ait+1

) is odd. Then dist(ai2 , ait+1
) is odd. Now consider B′ = {ai1 , ai2 , ait+1

}.
Clearly B′ ⊂ B and the clockwise distance between every consecutive pair in B′ is odd. So, by
Lemma 3.11, B′ is a blocking set contradicting the minimality of B. Now clearly for a blocking
set of size exactly three, by Lemma 3.10, clockwise distance between every consecutive pair in
B′ is odd.

• In an even cycle, suppose that {ai, aj} is a blocking set. Then from Lemma 3.10, it is clear that
dist(ai, aj) and dist(aj , ai) are odd. Suppose that there exists a minimal blocking set B of size
at least three in an even cycle. Then from Lemma 3.10, we know that there are at least two
vertices aij and ait in B such that dist(aij , aij+1) and dist(ait , ait+1) are odd (t could be j + 1).
Then from Lemma 3.11, we have that the set {aij , aij+1

} ⊂ B is a blocking set contradicting the
minimality of B.

This completes the proof.

Using Theorem 3.1, we see that the size of any “minimal blocking sets” in an odd cycle is exactly
three. Based on this property, we partition the set of odd cycles (or the components in G[F2]) into two
parts, bad component and nice component. We move on to provide the formal definitions as follows.
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Definition 3.3 (Bad Component and Nice Component). Let C be a cycle in G[F2]. If there exists an
independent set A ⊆ S of size at most 3 such that NG(A)∩C contains a blocking set in G[C], then we
call C a bad component. A component is said to be a nice component if it is not a bad component.

Observation 3. Let C be a connected component in G[F2]. Then, C ∈ B4 if and only if C is a nice
component in G[F2].

Proof. (⇒) Suppose C ∈ B4 where C is a bad component. Then there exists A ⊆ S such that |A| > 3
and NG(A) ∩ C = C ′ which is a blocking set in C. Note that |C ′| ≥ 3 and |A| ≥ 4. Then there exists
C ′′ ⊆ C ′ of size 3 (by Theorem 3.1) such that C ′′ is a minimal blocking set. As |A| > 3, there exists
A′ ⊆ A such that |A′| ≤ 3 and C ′′ ⊆ NG(A′). Then C ∈ B1 ∪ B2 ∪ B3 which is a contradiction that
C ∈ B4 and C /∈ B1 ∪ B2 ∪ B3. So C is a nice component and the observation is true.
(⇐) Let C be a nice component of G[F2] when C is not a bad component in G[F2]. Then C /∈ B1∪B2∪B3.
So, C ∈ B4.

Reduction Rule 3.8 (Nice Component Rule). Let C be a nice component in G[F2]. Then we set
G′ ← G \ C, S′ ← S and `′ ← `− vc(G[C]).

Lemma 3.12. Reduction Rule 3.8 is safe and can be applied in polynomial time.

Proof. First we prove that this reduction rule is safe. It suffices to prove that there exists a minimum
vertex cover for G containing exactly vc(C) many vertices from C. Let D be a minimum vertex cover
for G \C. We claim that D can be completed to a minimum vertex cover of G by picking vc(C) many
vertices from C.

Let S′ = S \D. We are done if we show that NG(S′) ∩ C = C ′ is a good set. In order to get a
minimum vertex cover of G, we can first pick NG(S′)∩C and as it is a good set, we can complete it to
get an optimum vertex cover of C by picking an overall vc(C) many vertices from C. Note that G[S′]
is an independent set. Suppose for the sake of contradiction that after picking C ′, we see that if we
want to complete it to a vertex cover of G, then we must pick at least vc(C) + 1 vertices. Then C ′ is a
blocking set. As C is an odd cycle, by Theorem 3.1, there exists a subset C ′′ of C ′ such that |C ′′| = 3
and C ′′ is a blocking set from Theorem 3.1. Then there exists an independent set S′′ ⊆ NG(C ′′)∩S′ of
size at most 3 such that C ′′ ⊆ NG(S′′) ∩ C which implies that C is a bad component, a contradiction
to the fact that C is a nice component. So this reduction rule is safe.
Now we prove that this rule can be applied in polynomial time. By Definition 3.3, we know that a
component C ∈ G[F2] is bad when there exists an independent set A ⊆ S of size at most 3 such that
NG(A) ∩ C contains a blocking set in G[C]. So, C is nice component when for all A ⊆ S of size at
most 3, NG(A)∩C is not a blocking set in G[C]. So for C being a bad component, we need to find an
witness A in S of size at most 3 such that NG(A)∩C forms a blocking set in G[C]. There are at most

(|S|+
(|S|

2

)
+
(|S|

3

)
) choices of A and we can test it in polynomial time whether any such witness exists.

So, this reduction rule can be implemented in polynomial time.

Note that Reduction Rules 3.5 and 3.6 used X ⊆ S such that X is an independent set of size at
most 2 and X is not a Chunk. Now that we have bounded the size of a minimal blocking set of an odd
cycle to 3, a similar rule on independent sets of size 3 would result in |B3| = O(k4) and eventually a
kernel upper bound with O(k6) vertices. But we produce a smaller kernel using Expansion Lemma by
constructing an auxiliary graph. This approach improves the kernel upper bound by actually deleting
some ‘redundant’ components in B3.

The bipartite graph H = (S3,B3, E), we construct has one part of the vertex set as S3, which is
the set of all independent sets of size 3 from S. The edge set E(H) is defined as follows. E(H) =
{(I, L)|I ∈ S3, L ∈ B3, there exists B ⊆ V (L) such that B is a blocking set of size 3 in L and
B ⊆ NG(I)}.

Lemma 3.13. Auxiliary graph H can be constructed in polynomial time.

Proof. To identify cycles in G[F2] that are in B3, we need to to identify and rule out the cycles in
B1 and B2. To check if a cycle C is in B1, we have to check if there exists a vertex x ∈ S such that
NG(x) ∩ V (C) is a blocking set in C. In this way, we first identify the set of cycles that are in B1.
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This completes the construction of B1. Next, among the remaining cycles, we check if there exists a
nonadjacent pair (x, y) ∈

(
S
2

)
such that NG(x) ∪NG(y) contains a blocking set in some cycle C in

G[F2]. In this way, we construct the set B2. Now, when Reduction Rule 3.8 is not applicable, then
we know that the remaining cycles must be in B3. We can check using Theorem 3.1 whether a set of
vertices in a cycle is a blocking set or not. After that we construct the graph H as described. So, the
auxiliary graph H can be constructed in polynomial time.

Reduction Rule 3.9 (Expansion Lemma Rule). If |B3| ≥ 4|S3|, then apply Expansion Lemma 2.1
with q = 4 from S3 to B3 to get A ⊆ S3, B ⊆ B3 with A,B 6= ∅ such that NH(B) ⊆ A and there is a
4-expansion from A to B. Associated with every (x, y, z) ∈ A, there are 4 distinct cycles in B. Pick
one of those 4 cycles for each such {x, y, z} ∈ A, delete them after decreasing ` by the size of the sum
of their optimum vertex cover sizes. I.e. Let Cp1

, . . . , Cp|A| be collection of such cycles. Then set

G′ ← G \ (Cp1
∪ . . . ∪ Cp|A|), S

′ ← S and `′ ← `− (
|A|∑
i=1

vc(Cpi
)).

Lemma 3.14. Reduction Rule 3.9 is safe and can be applied in polynomial time.

Proof. It follows from Lemma 3.13 and Lemma 2.1 that the reduction rule can be implemented in
polynomial time. Now we prove why the reduction rule is safe. We prove this in two steps. First
we show that there exists a minimum vertex cover of G′ containing at least one vertex from every
independent set in A. Then we will show that this implies that there exists a vertex cover of G that
has exactly vc(C) many vertices from every C ∈ B we have deleted.

The intuition for the first step is that due to the expansion property, every triple in A contains a
private set of 4 cycles in which it has a blocking set as a neighbor. Out of these 4 cycles, we have
deleted one and so at least 3 remain. If no vertex of the triple is in the solution, then their neighbors
(that form a blocking set in each of the 3 cycles) need to be in the solution resulting in 3 extra vertices
in the vertex cover than what are needed to cover the edges of the three cycles (by the definition of
blocking set). Instead, we are better of picking all vertices of the triple and choosing only the optimum
from each of the 3 cycles.

Once we establish this, the second step follows as now for every cycle deleted, if we delete the
vertices (from A) that are already in the vertex cover, there is no blocking set as the triples are not in
B1 or B2. Hence we can pick enough to cover the edges of those cycles alone to complete the vertex
cover.

We proceed with the formal proof that there exists a minimum vertex cover of G′ containing at
least one vertex from every independent set in A. Suppose not. Then let D be a minimum vertex
cover of G′ and suppose A′ ⊆ A is a set of independent triples that have no intersection with D (i.e.
D ∩ V (A′) = ∅ where V (A′) =

⋃
{x,y,z}∈A′

{x, y, z}). By the 4-expansion property, for each such triple

T = {x, y, z} ∈ A′, there are at least 4 distinct odd cycles and as we have removed one of them from
G, we will still have at least 3 cycles, say CT1

, CT2
, CT3

such that each of them contains a blocking
set which is in D (as no vertex of A′ is in D). Thus for every T ∈ A′ and for every i ∈ {1, 2, 3},
|D ∩ CTi

| ≥ vc(CTi
) + 1. Let CA′ be the set of all distinct 3|A′| such cycles. We construct D′ from D

as follows. D′ = (D \ V (CA′)) ∪ V (A′). Let S′ = S \D′. Note that S′ ∩ V (A′) = ∅.
We claim that that for all C ∈ CA′ , NG(S′)∩C is a good set in C. First we show that we are done

if we prove the claim. This is because, then we can add
∑

C∈CA′

vc(CA′) many vertices to get a vertex

cover to get an overall vertex cover D1 for G′. Then,

|D1| ≤ |D| − (
∑

C∈CA′

(vc(CA′) + 1) + 3|A′|+
∑

C∈CA′

vc(CA′)

= |D| − |CA′ |+ 3|A′| ≤ |D| − 3|A′|+ 3|A′| = |D|
Hence, we get a minimum vertex cover D1 which contains at least one vertex from every T ∈ A.
Now, we move on to prove the claim that for every C ∈ CA′ , NG(S′) ∩ C is a good set. Suppose not.
Let C be that cycle in CA′ such that NG(S′) ∩ C contains a minimal blocking set L ⊆ C of size 3. In
fact, there is also an independent set S′′ ⊆ S′, |S′′| ≤ 3 such that NG(S′′) ⊇ L. As C ∈ B3 and B3 is
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disjoint from each of B1,B2,B4, we get that |S′′| = 3. Then as NH(B) ⊆ A, S′′ ∈ A. But D′ contains
a vertex from every triple of A which contradicts the fact S′′ ∩D′ = ∅.
Thus we have shown that there exists a minimum vertex cover of G′ that contains at least one vertex
from every triple of A. Let D3 be such a vertex cover, and let S′3 = S \D3.

We claim that NG(S′3) ∩ C is a good set for any C that was deleted. We are done if we prove
the claim as then we can add vc(C) many vertices from every such C to get a minimum vertex cover
for G. Now, suppose for some C (that was deleted) NG(S′3) ∩ C is a blocking set. Note that C ∈ B
and B ⊆ B3. So, C ∈ B3. Then, by the Expansion Lemma (Lemma 2.1), we know that NH(C) ⊆ A.
Moreover any vertex of A is an independent set of size 3 in G. As C ∈ B3, there does not exist
x, y ∈ S, (x, y) /∈ E(G) and C ∩ (NG(x) ∪NG(y)) contains a blocking set in C. Therefore, there exists
{a, b, c} ⊂ S′3 such that NG({a, b, c}) ∩ C is a blocking set. It means that ((a, b, c), C) ∈ E(H). But,
then (a, b, c) ∈ A. But by our choice of D3, at least one of a, b, c is in D3. This is a contradiction.
Therefore, for any C which is deleted, NG(S′3) ∩ C is a good set. This completes the proof that the
reduction rule is safe.

Corollary 3.5. If Reduction Rule 3.9 is not applicable, then |B3| ≤ 4
(
k
3

)
.

Finally the following lemma follows from Reduction Rule 3.8 (as if this rule is not applicable,
every component is bad and B4 = ∅) and Corollaries 3.3, 3.4 and 3.5.

Lemma 3.15. If none of the Reduction Rules 3.1 to 3.9 are applicable, then the number of components
in G[F2] is O(k3).

3.4 Bounding G[F2] and Putting things together

We know from Lemma 3.15 that the number of odd cycles in G[F ] is O(k3). We also have from
Lemma 3.8 that the number of vertices in paths and even cycles in G[F ] is O(k3). So, the number
of connected components in G[F ] that have cycles is O(k3). So, G[F ] has a feedback vertex set of
size O(k3). As |S| ≤ k and G[F ] has a feedback vertex set with O(k3) vertices, we have that G has a
feedback vertex set with O(k3) vertices. Then, we can apply Theorem 2.1 on this graph and can get a
kernel with O(k9) vertices. But in order to improve the upper bound further, we utilize the graph
structure more carefully and provide an improved upper bound on the number of vertices in G[F2].

Finally, we bound the total number of edges in G[F2], i.e. in the odd cycles of G[F ]. Let c be
the number of odd cycles that remain in G[F2] after all the earlier reduction rules have been applied.
From Lemma 3.15, c is O(k3).

Lemma 3.16. Let G be a graph in which every component is an odd cycle and there are c components
in G and M be a maximum matching in G. Given X ⊆ V (G), let X contains both the endpoints of
r + c edges of M . Then |X|+ vc(G \X) ≥ vc(G) + r.

Proof. As every component of G is an odd cycle, so there exists a vertex from each of the components
that is not matched by M . Let A be the set of vertices that are not matched by M . Let B = V (G)\A.
Also all vertices of B are matched by M while G[B] is bipartite. So we have that vc(G) = |M |+ c =
vc(G[B]) + c. Let X ⊆ V (G) such that X contains both the endpoints of r + c edges of M . Then we
have that

|X|+ vc(G \X) = |X ∩A|+ |X ∩B|+ vc(G \X)

X ∩B contains both endpoints of r + c edges of M . And G[B] is a bipartite graph and M saturates
all the vertices of B. Also vc(G \X) ≥ vc(G[B \X]) as G[B \X] is an induced subgraph of G \X. So
we have that |X ∩B|+ vc(G \X) ≥ |X ∩B|+ vc(G[B \X]) ≥ vc(G[B]) + r + c by Lemma 3.6. As
vc(G[B]) + c = vc(G), we have that

|X ∩A|+ |X ∩B|+ vc(G \X) ≥ vc(G[B]) + r + c = vc(G) + r

This completes the proof of the lemma.

Now, when the Reduction Rules 3.5, 3.6 are not applicable, we have the following statements using
Lemma 3.16.
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Lemma 3.17. Let M1 be a maximum matching in G[F2] and c be the number of components in G[F2].
If Reduction Rules 3.5 and 3.6 are not applicable, then the following statements are true.

1. For every x ∈ S, NG(x) contains both the endpoints of at most |S|+ c edges in M1.

2. For every x, y ∈ S, (x, y) /∈ E(G), NG({x, y}) contains both the endpoints of at most |S| + c
edges in M1.

Proof. We prove the statements in the given order.

1. Suppose that NG(x) contains both the endpoints of r + c edges in M1 where r ≥ |S|+ 1. Let
NG(x) ∩ F = A. By Lemma 3.16, we know that |NG(x) ∩ F2|+ vc(G[F2 \NG(x)]) = |A ∩ F2|+
vc(G[F2 \A]) ≥ vc(G[F2]) + r. For our case, r ≥ |S|+ 1. So, vc(G[F2 \NG(x)]) + |NG(x)∩F2| ≥
vc(G[F2]) + |S|+ 1. Now, we have that

|NG(x) ∩ (F0 ∪ F1)|+ vc(G[(F0 ∪ F1) \NG(x)]) ≥ vc(G[F0 ∪ F1])

We know that
|NG(x) ∩ F |+ vc(G[F \NG(x)])

= |NG(x) ∩ F2|+ |NG(x) ∩ (F0 ∪ F1)|+ vc(G[F2 \NG(x)]) + vc(G[(F1 ∪ F0) \NG(x)])

So, |NG(x)∩F |+ vc(G[F \NG(x)]) ≥ vc(G[F2]) + |S|+ 1 + vc(G[F0 ∪F1]) = vc(G[F ]) + |S|+ 1.
Then {x} is not a Chunk. So, Reduction Rule 3.5 becomes applicable which is a contradiction.

2. Suppose that for some nonadjacent pair (x, y) ∈
(
S
2

)
, we have that NG({x, y}) contains both the

endpoints of r + c edges in M1. Let NG({x, y}) ∩ F = A. For our case r ≥ |S|+ 1. We have
that, vc(G[F \NG({x, y})]) + |NG({x, y}) ∩ F | = |A ∩ F |+ vc(G[F \ A]). Now, we know that
|A ∩ F |+ vc(G[F \A]) = |A ∩ F2|+ |A ∩ (F0 ∪ F1)|+ vc(G[F2 \A]) + vc(G[(F0 ∪ F1) \A]). By
Lemma 3.16, |A ∩ F2|+ vc(G[F2 \A]) ≥ vc(G[F2]) + r ≥ vc(G[F2]) + |S|+ 1. We also know that
|A ∩ (F0 ∪ F1)|+ vc(G[(F0 ∪ F1) \A]) ≥ vc(G[F0 ∪ F1]). So, we have that

|A ∩ F |+ vc(G[F \A]) = |A ∩ F2|+ |A ∩ (F0 ∪ F1)|+ vc(G[F2 \A]) + vc(G[(F0 ∪ F1) \A])

≥ vc(G[F2]) + vc(G[F0 ∪ F1]) + |S|+ 1 = vc(G[F ]) + |S|+ 1

Then, {x, y} is not a Chunk. So, Reduction Rule 3.6 becomes applicable which is a contradiction.

This completes the proof of the lemma.

Lemma 3.18. When Reduction Rules 3.1 to 3.9 are not applicable, the number of vertices in G[F2]
is O(k5).

Proof. By Reduction Rule 3.7, for every edge (u, v) ∈ E(G[F ]) (also for every (u, v) ∈ M1), there
is either a vertex x ∈ S such that x ∈ N(u) ∩ N(v) or there exists a pair of nonadjacent vertices
x, y ∈ S such that x ∈ N(u), y ∈ N(v) and NG(u) ∩NG(v) ∩ S = ∅. In the first case, we associate
the vertex x with the edge (u, v). In the second case, we associate the pair of nonadjacent vertices
(x, y). Let M1 be a maximum matching in G[F2] and c be the number of components in G[F2]. By
Lemma 3.17, for every x ∈ S, x is adjacent to both endpoints of at most k + c edges of M1. And
every pair of nonadjacent vertices x, y ∈ S, x and y together are adjacent to both endpoints of at most
k + c edges of M1. Therefore, |M1| ≤ (k +

(
k
2

)
)(k + c) = O(k5) as c is O(k3) by Lemma 3.15. The

number of vertices not matched by M1 is at most the number of components in G[F2]. So it follows
that |V (G[F2])| = 2|M1|+ c which is O(k5).

We know from Remark 1 that Reduction Rules 3.1 to 3.6 do not increase the parameter. Now, note
that Reduction Rules 3.7, 3.8 and 3.9 do not add any vertex in S as they perform only local operation
in F . So, the size of the modulator (or the parameter) cannot increase by any of the reduction rule.
So the following theorem is an immediate consequence of Lemma 3.8 and Lemma 3.18. The bound on
the number of edges follows because the number of edges in G[S] is O(k2), the number of edges in
G[F ] is O(k5) and the number of edges between F and S can be at most O(k6).

Theorem 3.2. VC-2-Mod has a kernel with O(k5) vertices and O(k6) edges.
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4 Vertex Cover Parameterized by Modulator to Trees and
Cycles

In this section, we explain how our ideas from the previous section can be used to extend to a
polynomial kernel when Vertex Cover problem is parameterized by the size of a set whose deletion
results in a disjoint union of trees and cycles. Before, that we recall the definition of the term
pseudo-forest.

Definition 4.1 (Pseudo-Forest). An undirected graph G is said to be a pseudo-forest if every
connected component of G has at most one cycle.

Vertex Cover parameterized by the size of a modulator to a pseudo-forest has a kernel with O(k12)
vertices [16, 17]. Now we consider a parameterization where the modulator S ⊆ V (G) is a deletion
set to a graph where every component is either a tree or an induced cycle and show that Vertex
Cover with such a parameterization has a kernel with O(k9) vertices. Note that G \ S in this case is
a special case of a pseudo-forest. Formal definition of our problem is as follows.

Vertex Cover parameterized by Modulator to Trees and Cycles (VC-Trees-Cycles)
Input: An undirected graph G, S ⊆ V (G) of size at most k such that every component of G[V (G)\S]
is either a cycle or a tree and an integer `.
Parameter: k
Question: Does G have a vertex cover of size at most `?

Let F = V (G) \ S. We partition F as T ] J where G[T ] is the graph whose every component is a
tree and G[J ] is the graph where every component is an induced cycle.

We first apply Reduction Rules 3.1 to 3.6 (Isolated Vertex Rule, Self Loop Rule, Degree 1 Rule,
Degree 2 Rule, Non-Chunk-Rule-I and Non-Chunk-Rule-II) to the instance (G,S, `). When they are
not applicable, we apply Reduction Rule 3.7 (Edge Rule) on the edges of the components that are
cycles. After the exhaustive applications of these rules, we apply Reduction Rule 3.8 (Nice Component
Rule) and 3.9 (Expansion Lemma Rule) exhaustively on the odd cycles of G[S ∪ J ]. Let (G′, S′, `′)
be the resulting equivalent parameterized problem. We first argue about the safety of the reduction
rules despite the new modulator.

Lemma 4.1. Reduction Rules 3.1 to 3.6 are safe. Moreover, the existence of T does not affect the
safety of the Reduction Rules 3.7, 3.8 and 3.9 when applied on G[S ∪ J ].

Proof. We basically argue that the existence of G[T ] does not affect the safety of the applied Reduction
Rules. From Remark 1, we know that Reduction Rules 3.1 to 3.6 are applicable for any instance
(G,S, `) where vertex cover is polynomial time solvable on G \ S and G \ S is hereditary as well as
closed under contraction of edges. So, Reduction Rules 3.1 to 3.6 are safe even with G[T ]. Also from
Remark 1, we know that those reduction rules do not increase the size of the modulator. Now as we
apply Reduction Rule 3.7 (Edge Rule) on the edges of cycles, the premise of applying the reduction
rule is satisfied. Also for Nice Component Rule (Reduction Rule 3.8) and Expansion Lemma Rule
(Reduction Rule 3.9), the premise is satisfied when they are applied to odd cycles in G[J ]. There is
no edge between a vertex of odd cycle and a tree. And as those rules are applied locally (and they
have no interaction with the components of T ), existence of T does not affect the safety of Reduction
Rule 3.7. Reduction Rule 3.7, 3.8 do not interact with the vertices of T . So safety of them are not
affected. Now when we apply Reduction Rule 3.9, then we do not delete any vertex from S. We only
delete some components from J . As such components do not interact with vertices of T , safety of
Reduction Rule 3.9 is not affected.

Note that the adjacency between the vertices of S′ and T will remain the same as they were in S
as S′ ⊆ S as we only delete vertices from S. So for any x ∈ S′, u ∈ T , as x is also in S, we have that
(x, u) ∈ E(G) if and only if (x, u) ∈ E(G′). If some vertex from S gets deleted during the construction
of S′, then that vertex gets deleted from the whole graph.
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Notice that Reduction Rule 3.7 was also applicable to the edges of those components of G \ S
that are paths. But, for this problem, we apply them only for the cycles. Similar to the proof of
Lemma 3.8, we can prove the following claim.

Lemma 4.2. When Reduction Rules 3.1 to 3.9 are not applicable, the number of vertices in the even
cycles of G[J ] is O(k3) and the number of odd cycles in G[J ] is O(k3).

Every even cycle has at least 4 vertices. So, the number of even cycles in G′[J ] is O(k3) by
Lemma 4.2. We also get from Lemma 4.2 that the number of odd cycles in G′[J ] is also O(k3).

Now we transform the instance (G′, S′, `′) to instance (G′, S′′, `′) by modifying S′ to get S′′ as
follows. Pick any arbitrary vertex from every component in G′ \ S′ that has a cycle and let J ′ be the
set of chosen vertices. Let F ′ = V (G′) \ S′. Now we set

• S′′ ← S′ ∪ J ′.
• F ′′ ← F ′ \ J ′.
By Lemma 3.15, we know that |J ′| = O(k3). Now, we see that G′[F ′′] is a forest. It means that

S′′ is a Feedback Vertex Set with |S′′| which is O(k3). The resulting problem now is the Vertex
Cover parameterized by the size of a feedback vertex set for which there is a kernel with
O(|S′′|3) vertices from Theorem 2.1 which results in an O(k9) vertex kernel for our problem. Thus we
have the following theorem.

Theorem 4.1. VC-Trees-Cycles has a kernel with O(k9) vertices.

5 Vertex Cover parameterized by bounded cluster vertex dele-
tion set

Now, we consider the Vertex Cover problem when parameterized by the size of degree-1-modulator
(or equivalently the size of a subset whose deletion results in a graph of degree at most one). Here the
resulting graph is a collection of isolated vertices and edges, i.e. disjoint union of cliques of size at
most two. In fact, what we will give is a kernel for VC-param-d-CVD.

Vertex Cover parameterized by d-CVD (VC-param-d-CVD)
Input: An undirected graph G, S ⊆ V (G) of size at most k such that every connected component of
G[V (G) \ S] is a clique with at most d vertices and an integer `.
Parameter: k
Question: Does G have a vertex cover of size at most `?

Recall that we use S to denote the set of vertices to be deleted such that each component of G \ S
is a clique and each such clique has at most d vertices. We use F = V (G) \ S. If there is no bound on
the size of the components in F , then it is known that the problem has no polynomial kernel unless
NP ⊆ coNP/poly. In fact, Bodlaender et al. [2] showed this infeasibility even when F is a clique (with
no restriction on the number of vertices).

For this problem, we would also need the notion of a hypergraph. A hypergraph, H, consists
of vertex set V (H) and hyperedge set E(H), where every hyperedge is a subset of V (H). Given a
hyperedge e ∈ E(H), by V (e), we denote the subset of V (H) that e comprises of. Given X ⊆ V (H),
an induced hypergraph on X is denoted by H[X] and it consists of all the edges h ∈ E(H) such that
h ⊆ X. Similarly for X ⊆ V (H), we use H \X to denote hypergraph H[V (H) \X].

Definition 5.1 (Independent Set in a hypergraph). A set of vertices A ⊆ V (H) is said to be an
independent set in a hypergraph if no hyperedge is contained in H[A].

Definition 5.2 (Vertex Cover in a hypergraph). A set of vertices A ⊆ V (H) is said to be a vertex
cover in hypergraph if for every hyperedge e ∈ E(H), A ∩ V (e) 6= ∅. A vertex cover in a hypergraph is
also known as a hitting set.
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Now for this problem we partition the components of G[F ] into two types. As every component of
G[F ] is a clique, we call them a good clique and a bad clique.

Definition 5.3 (Bad Clique and Good Clique). A component C in G[F ] is said to be a bad clique if
there exists an independent set A of at most d vertices from S such that V (C) ⊆ NG(A). A component
C is said to be a good clique if it is not a bad clique.

Now, we proceed to state the list of reduction rules for this problem. As a preprocessing, we only
require that the isolated vertices are removed. So, we do not need to even make the graph minimum
degree three. In case a component in G[F ] is an isolated vertex in G, then it is a good clique. The
next reduction rules have similarity with Reduction Rules 3.5, 3.6 and 3.8 of Section 3. But as it is
applied for different types of graphs, we state them here for completion.

Reduction Rule 5.1. Let C be a component of G[F ] where C is a good clique, then

• G′ ← G \ C.

• S′ ← S.

• `′ ← `− |V (C)|+ 1.

Lemma 5.1. Reduction Rule 5.1 is safe.

Proof. (⇒) Let D be a vertex cover of G of size at most `. So, D \ V (C) is a vertex cover of G′.
Moreover, D must contain at least |V (C)| − 1 vertices as C is a clique in G[F ] (hence in G). So,
|D \ V (C)| ≤ |D| − (|V (C)| − 1) = |D| − |V (C)|+ 1. Hence, D \ V (C) is a vertex cover of G′ of size
at most `′.

(⇐) Let D′ be a vertex cover of G′ of size at most `′. Let S′ = S \D. S′ is an independent set. If
we can prove that V (C) 6⊂ NG(S′), then we are done. Because, in that case, at least one vertex in C
is not a neighbor to S′. So, we can add |V (C)| − 1 vertices into D′ and get a vertex cover of size at
most ` for G. So, we will prove that V (C) 6⊂ NG(S′). Suppose V (C) ⊆ NG(S′). If S′ has at most d
vertices, then C is a bad clique which is a contradiction. Otherwise |S′| > d and V (C) ⊆ NG(S′). So,
there exists A′ ⊆ S′ consisting of at most d vertices such that and V (C) ⊆ NG(A′). Then also C is a
bad clique which is a contradiction. So, V (C) 6⊂ NG(S′) and the reduction rule is safe.

Observe that every component C in G[F ], that contains a vertex which has no neighbor in S, is a
good clique. When Reduction Rule 5.1 is not applicable, every vertex in F has at least one neighbor
in S. Recall that in Section 3, we defined Chunk. We will use the property of Chunk to design the next
reduction rule. The next reduction rule has similarity with Reduction Rule 3.5 and 3.6 in Section 3.

Reduction Rule 5.2. If there exists an independent set A of at most d− 1 vertices from S such that
A is not a Chunk, then do the following:

1. If |A| = 1, then we set G′ ← G \A,S ← S \A and `′ ← `− 1.

2. If 2 ≤ |A| ≤ (d − 1), then add hyperedge {x1, . . . , x|A|} to get the graph G′ where A =
{x1, . . . , x|A|}. We set S′ ← S and `′ ← `.

Lemma 5.2. Reduction Rule 5.2 is safe.

Proof. We prove the correctness of this reduction rule in the given order. Let D be a minimum
vertex cover of G and A ⊆ S is an independent set of size at most d such that A is not a Chunk. By
Corollary 3.2, we know that D ∩A 6= ∅. Then we have the following cases.

1. If |A| = 1, we have that A ⊆ D. So, any minimum vertex cover of G must contain A and the
reduction rule is safe.

2. If 2 ≤ |A| ≤ d− 1, we have that D ∩ A 6= ∅. In other words, any minimum vertex cover of G
must contain at least one vertex from A. Adding an hyperedge that contains exactly the set of
vertices in A captures this constraint. So, the reduction rule is safe.

23



This completes the proof of the lemma.

Note that as we have added hyperedges in S of size at least three, we need the following domination
rules. Note that hyperedges consisting of more than two vertices are present only in S. So, for any
vertex x ∈ S, we can use NG(x) ∩ F = {y ∈ F |(x, y) ∈ E(G)} and for any vertex u ∈ F , we can use
NG(u) ∩ S = {v ∈ S|(u, v) ∈ E(G)}. For every vertex x, denote HE(x) = {e ∈ E(G)|x ∈ V (e)}. For
every hyperedge e, the set of vertices that are present in the hyperedge e is denoted by V (e). We have
the following domination rule that are due to Abu-Khazm [1]. Note that when we delete a vertex u
from a hypergraph, we delete all the hyperedges that are in HE(u) as well unless specified explicitly.

Reduction Rule 5.3. If there are two hyperedges e1, e2 such that V (e1) ⊆ V (e2), then delete e2 from
G to get the graph G′. We set S′ ← S and `′ ← `.

We will need the following property of Chunk for this problem and this property is specially used
to prove the number of components in G[F ].

Proposition 1. Let A be any independent set consisting of at most d vertices from S. If NG(A) ∩ F
contains all vertices of at least |S|+ 1 components in G[F ], then A is not a Chunk.

Proof. By Defintion 3.1, an independent set X of size at most d from S is called a Chunk when
|NG(X)∩F |+ vc(G[F \NG(X)]) ≤ vc(G[F ]) + |S|. Let t be the number of components in G[F ]. Then
vc(G[F ]) = |F | − t. Now, |NG(A) ∩ F |+ vc(G[F \NG(A)] = |F | − t+ r = vc(G[F ]) + r if NG(A) ∩ F
contains all vertices of r components in G[F ]. By the precondition of the proposition, r ≥ |S| + 1.
So, |NG(A) ∩ F |+ vc(G[F \NG(A)] = |F | − t+ r ≥ |F | − t+ |S|+ 1 = vc(G[F ]) + |S|+ 1. By our
assumption, A is an independent set and has at most d vertices. So A is not a Chunk.

We partition the set of bad cliques of G[F ] (that are also components of G[F ]) into two parts Z1

and Z2 as follows.

• Z1 = {C|C is a bad clique in G[F ] such that there exists an independent set A ⊆ S
of at most d− 1 vertices such that V (C) ⊆ NG(A) ∩ F}.

• Z2 = {C|C is a bad clique in G[F ] for which there exists an independent set A ⊆ S
of at most d vertices such that V (C) ⊆ NG(A) ∩ F} \ Z1.

We have the following lemma when the above reduction rules are not applicable.

Lemma 5.3. When Reduction Rules 5.2 and 5.3 are not applicable on an instance (G,S, `), then

|Z1| ≤ k
d−1∑
i=1

(
k
i

)
where |S| ≤ k.

Proof. By the definition of Z1, for every component C ∈ Z1, there exists an independent set A of
size at most d − 1 of S such that V (C) ⊆ NG(A). As Reduction Rule 5.2 is not applicable, every
independent set A of size at most d−1 is a Chunk. For any independent set A of size at most d−1 in S,
NG(A) contains all vertices of at most k components by Proposition 1. So the number of components

in Z1 is at most |S|
d−1∑
i=1

(|S|
i

)
≤ k

d−1∑
i=1

(
k
i

)
.

Let C be a component in Z2 consisting of d vertices. Then there exists an independent set A ⊆ S
of exactly d vertices such that V (C) ⊆ NG(A). Now, we construct a bipartite graph H(SB , Z2, J)
where SB = {X ⊆ S|X is an independent set in G and |X| = d}. For every A ∈ SB , for every C ∈ Z2,
we add an edge between A and C only when V (C) ⊆ NG(A) ∩ F .

Reduction Rule 5.4. If |Z2| ≥ (d + 1)|SB |, then apply q-Expansion Lemma (Lemma 2.1) with
q = d+ 1 from SB to Z2 to obtain PB ⊆ SB , QB ⊆ Z2 such that NH(QB) ⊆ PB. For every X ∈ PB,
add the hyperedges of the form {x1, . . . , xd} where X = {x1, . . . , xd}. Let the new graph be G′. We set
S′ ← S and `′ ← ` (see Figure 3 for an illustration).

Lemma 5.4. Reduction Rule 5.4 is safe.
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SB

Z2

Gray Vertices form QB

Black Vertices form PB

NH(QB) ✓ PB

Figure 3: An illustration of Reduction Rule 5.4 when q = 4.

Proof. Note that PB is a collection of d-tuples from S. All those tuples are independent sets. It suffices
to prove that any minimum vertex cover of G contains at least one vertex from every d-tuple from PB .
Suppose not. Let D be a minimum vertex cover of G for which X1, . . . , Xb ∈ PB (b > 0) such that
D ∩Xi = ∅. For every Xj ∈ PB (where j ∈ [b]), there are Cj,1, . . . , Cj,d+1 ∈ NH(Xj)∩QB . Moreover,
for every i ∈ [d+ 1], V (Cj,i) ⊆ D. We construct D′ from D as follows. We add D′ = D ∪ (

⋃
i∈[b]

V (Xi))

into D. So |D′| = |D| + bd. Now, for every A ∈ PB , A ∩D′ 6= ∅. Now, let S′ = S \D′. We claim
that for every component C ∈ QB, |NG(S′) ∩ V (C)| < |V (C)|. Suppose not. Then, let C ′ be a
component in QB such that V (C) ⊆ NG(S′). If |S′| < d, then C ′ ∈ Z1. This is a contradiction as
C ′ ∈ Z2 by assumption where Z2 ∩ Z1 = ∅. If |S′| ≥ d, then there exists A′ ⊆ S′ for which |A′| = d
and V (C ′) ⊆ NG(A′). Then, A′ ∈ NH(C ′). As C ′ ∈ QB, A′ ∈ PB which is a contradiction to the
fact that D′ ∩A′ 6= ∅. So, for every component C ∈ QB, |NG(S′) ∩ V (C)| < |V (C)|. Now, for every
component C ∈ QB , if V (C) ⊆ D′, then remove one vertex p ∈ V (C) from D′ such that p /∈ NG(S′).
In this process, we construct D′′. Note that we have removed b(d+ 1) vertices from D′ to get D′′. So,
|D′′| = |D′| − b(d+ 1) = |D|+ bd− bd− b = |D| − b. As b > 0, |D′| < |D|. This is a contradiction to
the fact that D is a minimum vertex cover. So, any minimum vertex cover intersects every d-tuple in
PB . Hence the reduction rule is safe.

The following Lemma is to justify that the above mentioned reduction rules can be implemented
in polynomial time.

Lemma 5.5. Reduction Rules 5.1, 5.2, 5.3, 5.4 can be implemented in polynomial time.

Proof. Reduction Rule 5.1 requires us to check whether some component C a is good clique or not.
By Definition 5.3, a component C is a bad clique when there exists an independent set A of size at
most d in S such that V (C) ⊆ NG(A). As d is a constant it is possible to determine in O(kdnO(1))
time (by brute forcing over all possible subsets of S that are of size at most d) whether a component
is a good clique or a bad clique. So, Reduction Rule 5.1 can be implemented in polynomial time.
Similarly, by brute-forcing over all subsets of size at most d− 1, it is possible to check whether there
exists an independent set A of size at most d − 1 that is not a Chunk. So, Reduction Rule 5.2 can
be implemented in polynomial time. Reduction Rule 5.3 requires us to check whether set of vertices
of one hyperedge is contained in the set of vertices of another hyperedge. This condition can be
checked in polynomial time as all there are O(kd) hyperedges in G. So Reduction Rule 5.3 also can
be implemented in polynomial time. Constructing graph H requires us to construct SB such that
|SB | = O(kd). In order to construct Z2, we have to construct Z1. This can be done in polynomial
time. Once Reduction Rule 5.1, 5.2 are not applicable and Z1 is constructed, the components in F
that are not in Z1 are in Z2. Once Z2 is constructed, we have to check whether for every C ∈ Z2, for
every A ∈ SB whether V (C) ⊆ NG(A). So, H can be constructed in polynomial time. Now, Reduction
Rule 5.4 can be implemented in polynomial time as this requires us to apply (d+ 1)-Expansion Lemma
on a bipartite graph whose size is O(|SB | · n) as |Z2| ≤ n. This completes the proof.

Lemma 5.6. When Reduction Rules 5.1, 5.2, 5.3, 5.4 are not applicable, then the input graph has
been transformed to an equivalent hypergraph with O(kd) vertices. Each hyperedge has size at most d
and hyperedges of size more than two are present only in S.
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p1
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p4

p5

Anchor Clique

Necessary Tuple

Figure 4: Illustrations of an anchor clique and a necessary tuple. In this example, {p1, p2, p3, p4, p5} is
an anchor clique and {x1, x2, x3, x4, x5} is the corresponding necessary tuple.

Proof. As Reduction Rule 5.1 is not applicable, every component C ∈ G[F ] is a bad clique. So, for
every bad clique is either a component in Z1 or in Z2. By hypothesis, precondition of Lemma 5.3 is
satisfied. By Lemma 5.3, |Z1| is O(kd). When Reduction Rule 5.4 is not applicable, we have that
|Z2| ≤ (d+1)|SB | ≤ (d+1) ·

(
k
d

)
. So the number of components in G[F ] is O(kd). Hence the equivalent

hypergraph contains O(d · kd) = O(kd) vertices.

By Lemma 5.6, we have that VC-param-d-CVD has a compression consisting of O(kd) vertices.
In particular, in that compression there are O(kd) components in G[F ] and each component has at
most d vertices. When G[F ] is a graph of degree at most 1, every component of G[F ] is either an
isolated vertex or an edge. Then, the problem is equivalent to VC-param-2-CVD. Then, the reduced
hypergraph is a graph. In particular, this problem is equivalent to VC-1-Mod. So, we have the
following corollary.

Corollary 5.1. VC-1-Mod has a kernel with O(k2) vertices and O(k3) edges.

Now, the next step is to convert our resulting hypergraph into a graph. We have added hyperedges
only to capture constraints that some of the subsets of size more than two also intersects any optimal
solution. In order to transform our hypergraph into a graph, we need to define the following two terms,
anchor clique and necessary tuple (variations of which were defined by Fomin and Strømme [16]).

Definition 5.4 (Anchor Clique). Let C be a component of G[F ] with vertex set {p1, . . . , pr} where 3 ≤
r ≤ d. Then, C is said to be an anchor clique if there exists an independent set X = {x1, . . . , xr} ⊆ S
such that the following things are true.

• NG(V (C)) = X.

• For every i ∈ [r], we have that NG(pi) = (C ∪ {xi}) \ {pi}.

(see Figure 4 for an illustration)

Definition 5.5 (Necessary Tuple). Let X ⊆ S be an independent set. Then, X is said to be a
necessary tuple if there exists an anchor clique C such that NG(V (C)) = X (see Figure 4 for an
illustration).

The intuition behind defining anchor clique and necessary tuple is to identify those independent
sets in S which must have a nonempty intersection with any minimum vertex cover. Therefore, we
have the following lemma.

Lemma 5.7. Suppose that G has a vertex cover of size at most ` and S = {X ⊆ S|X is a necessary
tuple }, then G also has a vertex cover D of size at most ` such that for every X ∈ S, D ∩X 6= ∅.
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Proof. Let G has a vertex cover D′ of size at most `. If for all X ∈ S, D′ ∩X 6= ∅, then we are done.
So, let us assume that there exists X ∈ S such that D′ ∩X = ∅. Then, consider the anchor clique C
for which NG(V (C)) = X. As X ∩D′ = ∅ and D′ is a vertex cover, we have that V (C) ⊆ D′. As C is
an anchor clique, for any p ∈ V (C), we have NG(p) ∩ S = NG(p) ∩X = {x} for some x ∈ X. Now,
we construct D from D′ as follows. We take some p ∈ V (C) arbitrarily and construct D as follows.
D = (D∪{x})\{p}. Clearly |D| ≤ `. Also D is a vertex cover of G because NG(p) = (V (C)∪{x})\{p}
and by construction NG(p) ⊆ D. So, there exists a vertex cover G containing at least one vertex from
every necessary tuple.

Now, we need one more reduction rule which will convert the hypergraph into a graph in which
the asymptotic number of vertices will not increase. However, we apply the following reduction rule
for the first time when Reduction Rules 5.1, 5.2, 5.3, 5.4 are not applicable. Moreover, after one
application of the following reduction rule, we do not apply the earlier reduction rules (i.e. Reduction
Rules 5.1, 5.2, 5.3, 5.4) anymore.

Reduction Rule 5.5. Let (G,S, `) be an irreducible instance that achieves the compression provided
by Lemma 5.6. Let X ∈ E(G) be a hyperedge of size at least three. Then remove X from E(G)
and add an anchor clique C such that NG(V (C)) = X. In particular, if X = {x1, . . . , xr}, then
V (C) = {p1, . . . , pr} and the followings are satisfied:

• V (G′)← V (G) ∪ V (C).

• S′ ← S.

• E(G′)← (E(G) ∪ {(pi, xi)|i ∈ [r]} ∪ {(pi, pj)|i 6= j, i, j ∈ [r]}) \X.

• `′ ← `+ r − 1.

Lemma 5.8. Reduction Rule 5.5 is safe and can be implemented in polynomial time.

Proof. (⇒) Let D be a minimum vertex cover of G. Let X ∈ E(G) be a hyperedge of size at least 3.
Let C be the anchor clique added to get G′ such that NG′(V (C)) = X. As X was hyperedge in G,
we know that D ∩X 6= ∅. Then, V (C ′) 6⊂ NG′(X \D). So, |NG′(X \D)| < |X| = r. So, we can add
|V (C)| − 1 many vertices into D and get a vertex cover of G′ of size at most |D|+ r − 1.
(⇐) Let D′ be a minimum vertex cover of G′. If X∩D′ 6= ∅, then we are done. In that case we construct
D = D′ \ V (C) to get a vertex cover of size at most |D′| − r + 1. Otherwise C be the anchor clique in
G′ such that NG′(V (C)) = X. So, X is a necessary tuple in G′. By Lemma 5.7, we can construct
another minimum vertex cover D′′ of G′ such that X ∩D′′ 6= ∅. Then |NG(X \D′′)∩ V (C)| < |V (C)|.
So |D′′ \ V (C)| = |D′′| − |V (C)|+ 1 = |D′| − r + 1. So D = D′′ \ V (C) be a vertex cover of G as D
intersects the hyperedge X. So, the reduction rule is safe.
This reduction rule has to find out whether there exists a hyperedge of size at least 3 and at most d in
G. Also such hyperedges can only have vertices from S. As d is a constant, this reduction rule can be
implemented in polynomial time.

We keep applying Reduction Rule 5.5 as long as there exists a hyperedge with more than 2 vertices
in the graph. Now, we have the following theorem.

Theorem 5.1. VC-param-d-CVD has a kernel with O(kd) vertices.

Proof. Our kernelization algorithm goes as follows. We first apply Lemma 5.6 on the input instance
(G,S, `) where |S| is the parameter. Initial input instance is a graph. Applying Lemma 5.6, we get an
instance for vertex cover (also called a hitting set) in a hypergraph (G′, S′, `′) where |V (G′)| = O(kd)
and |S′| ≤ k. In particular, all hyperedges of size at least three and at most d are completely contained
in S′. So, G′ \ S′ is a graph. Moreover, there are O(kd) components in G′ \ S′. Next, we apply only
Reduction Rule 5.5 in the instance (G′, S′, `′) as long as there remains a hyperedge of size at least three
and at most d in G′ \ S′. We get the instance (G′′, S′′, `′′) where S′′ = S′. Note that by construction,

at most
d∑

i=3

(
k
i

)
≤ d · kd anchor cliques are added to G′ \ S′ to get G′′. So, number of components in

G′′ \ S′′ is still O(kd). As each component in G′′ that was not in G′ has at most d vertices, we get a
graph with O(kd) vertices. So, VC-param-d-CVD has a kernel with O(kd) vertices.
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6 Kernel Lower Bounds

Here we prove lower bounds, under complexity theoretic assumptions, for the size of the kernel of the
problems we considered in this paper. We prove these by giving a parameter preserving transformation
from d-CNF-SAT to our problem(s) and use a theorem due to Dell and van Melkebeek [9]. Here
d-CNF-SAT is the problem of testing the satisfiability of a d-CNF formula, a boolean formula
where the clauses are in CNF form with at most d literals each. We use the terminologies of oracle
communication protocol and parameter preserving transformation for this. The definitions and the
known results we use are given below.

Definition 6.1 (Oracle Communication Protocol). (See [11, 9]) Let L ⊆ Σ∗ be a language. An oracle
communication protocol for language L is a communication protocol with two players Alice and Bob.
Alice is given an input x ∈ Σ∗ and can only use poly(|x|) time for her computations. Player Bob is
computationally unbounded, but not given any part of x. At the end of the protocol, Alice should be
able to decide if x ∈ L using help (communication) from Bob. The cost of the protocol is the number
of bits of communication between Alice and Bob.

We know the following theorem due to Dell and van Melkebeek [9].

Theorem 6.1 (Lower Bound for d-CNF-SAT [9]). The d-CNF-SAT has no oracle communication
protocol of cost O(nd−ε) for any d ≥ 3, ε > 0 unless NP ⊆ coNP/poly.

The above result by Dell and van Melkebeek can be rephrased as follows (see [7, 24]).

Theorem 6.2 ( [7, 24]). Let φ be an instance of d-CNF-SAT with n variables and m clauses for
some d ≥ 3. If there exists a polynomial time algorithm that transforms φ to an equivalent instance of
an arbitrary problem with O(nd−ε) bits for some ε > 0, then NP ⊆ coNP/poly.

Note that we use the size of a graph to mean the number of vertices and edges of that graph in
the following theorems. Before that, we need the notion of parameter preserving transformation.

Definition 6.2 (Parameter preserving transformation (PPT)). Let Π1 and Π2 be two parameterized
problems. We say that there exists a parameter preserving transformation from Π1 to Π2 if there
exists a polynomial time algorithm B that given an instance (x, k) of Π1, constructs an instance (x′, k′)
of Π2 such that

• (x, k) ∈ Π1 if and only if (x′, k′) ∈ Π2, and

• k′ ≤ ck for some constant c independent of |x| and k.

There is a standard folklore reduction (see for example [33], when d = 3) from d-CNF-SAT to
VC-param-d-CVD. We observe that this reduction is actually a parameter preserving transformation
and provide here for completeness.

Theorem 6.3. There exists a parameter preserving transformation from the d-CNF-SAT param-
eterized by the number of variables to VC-param-d-CVD. In VC-param-d-CVD, the size of the
modulator is twice the number of variables in the d-CNF-SAT formula.

Proof. Let φ be the given d-CNF formula having n variables and m clauses. Every clause has at most
d literals. In the graph we construct, corresponding to each variable x, we will have an edge (x, x).
Corresponding to a clause Cj with dj literals, we will have a clique of size dj with vertices labeled
with the corresponding literals in the clause. More specifically, let x1, x2, . . . , xn be the variables, and
let Cj be a clause. We name a vertex of the clique corresponding to the clause to be ya,j if xa is a
literal in Cj and ya,j if xa is a literal in Cj . Let S = {xi|i ∈ [n]} ∪ {xi|i ∈ [n]} be the modulator. For
every i ∈ [n], j ∈ [m], we draw edges (xi, yi,j) and (xi, yi,j). As |S| = 2n and this transformation can
be performed in polynomial time, the theorem follows from the claim that the given formula φ is

satisfiable if and only if G has a vertex cover of size at most n+
m∑
j=1

(dj − 1).
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Note that any vertex cover of G has size at least n+
m∑
j=1

(dj − 1) as we have a matching of size

n in S and the edges of the j’th clique (corresponding to clause Cj) of F requires (dj − 1) vertices
to cover. If φ is satisfiable, then we find the vertex cover of G as follows. We pick the vertices of S
according to the assignment that satisfies φ (i.e. for each variable x, pick x if x is set to be true in the
satisfying assignment and pick x otherwise.) And each clause Cj has a literal, say, xa that makes the
clause satisfiable, so we pick to the vertex cover, all but the ya,j vertex from the corresponding clique.
Edges between ya,j and S are covered by xa that would have been picked in the vertex cover.

Conversely, let R be a vertex cover of G of size
m∑
j=1

(dj − 1) + n. Consider R ∩ S. As S has an

edge between xi and xi for every i, exactly one from xi and xi is present in R. Now, we construct an
assignment b from R ∩ S. If xi ∈ R ∩ S, then set xi = true and set xi = false otherwise. The claim is
that every clause is satisfiable. This is because for the clique corresponding to the clause Cj , exactly
dj − 1 vertices are in R, and hence some vertex, say ya,j is not in R. Then to cover the edge (ya,j , xa),
xa must be in R∩ S which means that the literal xa makes the clause Cj satisfiable. Thus each clause
of φ is satisfied by the assignment.

Theorem 6.4. For any d ≥ 3, ε > 0, VC-param-d-CVD has no kernel of size O(kd−ε) unless
NP ⊆ coNP/poly. In particular, for any d ≥ 3, ε > 0, there exists no polynomial time algorithm that
transforms a given instance of VC-param-d-CVD to an equivalent instance of any arbitrary problem
with O(kd−ε) bits unless NP ⊆ coNP/poly.

Proof. Let (G,S, `) be an instance of VC-param-d-CVD. Suppose that there exists a polynomial time
algorithm B that transforms (G,S, `) to an equivalent instance x ∈ Σ∗ of an arbitrary problem L ⊆ Σ∗

such that |x| can be represented using O(|S|d−ε) bits. Then, given an instance φ of d-CNF-SAT with
n variables and m clauses, first we apply the polynomial time algorithm given by Theorem 6.3 and get
an instance (G,S, `) of VC-param-d-CVD such that |S| = 2n. Now, we apply the algorithm B that
transforms (G,S, `) to an equivalent instance x ∈ Σ∗ of L ⊆ Σ∗. We know by our assumption that
x can be represented using O(|S|d−ε) bits, i.e. O(nd−ε) bits. But this will imply from Theorem 6.2
that NP ⊆ coNP/poly. Now, if VC-param-d-CVD has a kernel of size O(kd−ε), then this kernel
has O(kd−ε) vertices and edges. The adjacency list of that graph takes O(kd−ε log2(kd−ε)) bits to
represent this graph. Hence that graph can be represented using O(kd−ε

′
) bits for some ε′ > 0. Then,

this kernel will provide a polynomial time algorithm that transforms an instance of VC-param-d-CVD
to an instance of Vertex Cover problem with O(kd−ε

′
) bits for some ε′ > 0. This will also imply

NP ⊆ coNP/poly. This completes the proof of the theorem.

Note that a collection of cliques of size at most three is a subclass of graphs with degree at most
two. So we have that VC-param-3-CVD is a special case of VC-2-Mod. So, the following corollary
follows from Theorem 6.4 when d = 3.

Corollary 6.1. VC-param-3-CVD has no kernel of size O(k3−ε) for any ε > 0 unless NP ⊆ coNP/poly.
In particular, VC-2-Mod has no kernel of size O(k3−ε) for any ε > 0 unless NP ⊆ coNP/poly.

7 Conclusion

In this paper we gave polynomial kernels for VC-2-Mod and other related problems. There is a
gap between upper and lower bounds on the kernel sizes we obtained for VC-2-Mod. It would be
interesting to bridge this gap. We also know that Vertex Cover admits an O(k12) vertex kernel
when parameterized by the deletion distance to a pseudo-forest [17]. It would be interesting to see
whether the ideas for VC-2-Mod can be extended to get an improved kernel for this problem. It is
known that Vertex Cover admits a randomized polynomial kernel parameterized by the odd cycle
transversal number of the graph (minimum number of vertices whose deletion results in a bipartite
graph). Is it possible to obtain a deterministic polynomial kernel for this parameterization (maybe
using some ideas from this paper)? We think this might be easier and probably the first step towards
obtaining a deterministic polynomial kernel for the Odd Cycle Transversal problem itself which
is a long standing open problem.
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